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Motivation

We are currently in the NISQ era:

Small Scale Quantum Computers.

Noisy Quantum Circuits.

Limited Connectivity.

Hybrid Quantum/Classical Algorithms (VQE/QAOA):

Small Quantum Computer with fixed Architecture.

Postprocessing of measurements in a classical
computer.

Can this framework offer any practical quantum advantage?

I. Kolotouros (University of Edinburgh) Adiabatic quantum computing with parameterized quantum circuitsApril 14, 2023 3 / 27



Variational Quantum Algorithms

Step 1. Problem at hand → H where H is an interacting qubit
Hamiltonian.

H =
L∑

l=1

clPl (1)

where cl ∈ R, Pl a Pauli string, L = O(poly(n)) and n is the system
size.

Step 2. Choose ansatz family U(θ) = V (θM) . . .V (θ1) where
M = O(poly(n)) and initial parameters θ0.

Step 3. Execute the quantum circuit and measure the parameterized
state |ψ(θ)⟩ = U(θ) |0⟩⊗n.

Step 4. Choose an objective function whose global minimum will
correspond to the solution of the problem (usually the expectation
value E (θ) = ⟨ψ(θ)|H |ψ(θ)⟩).

I. Kolotouros (University of Edinburgh) Adiabatic quantum computing with parameterized quantum circuitsApril 14, 2023 4 / 27



Variational Quantum Algorithms

Step 5. Choose a classical optimization algorithm and update the
parameters following the direction that minimizes the objective
function. For example:

θt+1 = θt − η∇E (θt) (2)

Step 6. When convergence occurs at θ∗ = argminθ E (θ) return the
ground state approximation |ψ(θ∗)⟩.
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Bottlenecks
Biggest obstacles in VQAs:

Local minima.
Performance is sensitive to initial parameters.
Barren Plateaux.
No complexity-theoretic arguments about their scaling.
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Ascending CVaR (Phys. Rev. Research 4, 023225)

Classical Optimization problems have diagonal Hamiltonians.

Prepare |ψ(θ)⟩ → Measure → Sort energy samples.

Keep only α percentage of lowest energies and minimize it → CVaRα

Motivation.

Choice of α is random.

We need 1/α measurements to achieve the same accuracy.

We will not achieve the largest overlap with the optimal solution.

CVaRα with different α agree on the ground state but the rest of the
landscape is different!

We can allow α to vary slowly! Significant improvement in performance in
MaxCut, Number Partitioning, and Portfolio Optimization.

I. Kolotouros (University of Edinburgh) Adiabatic quantum computing with parameterized quantum circuitsApril 14, 2023 7 / 27



Adiabatic Quantum Computing
Conventional algorithms with proven theoretical guarantees implies
Adiabatic Quantum Computing (AQC).

Inialize system in an easy-to-prepare ground state of a Hamiltonian
H0.

Allow the system of qubits to interact under the Hamiltonian:

H(t) =

(
1− t

tf

)
H0 +

t

tf
H1, t ∈ [0, tf ] (3)

If certain conditions are met, the system will find itself in the ground
state of H1 at t = tf .

To ensure adiabaticity:

The system must be evolved sufficiently slowly so that it never jumps
to the instantaneous excited state at any time throughout the
evolution.

The total time tf is inversely correlated to the spectral gap, i.e. the
energy difference between the ground state and the first excited state.

I. Kolotouros (University of Edinburgh) Adiabatic quantum computing with parameterized quantum circuitsApril 14, 2023 8 / 27



Adiabatic Quantum Computing

Bottlenecks:

Some problems have exponentially (to the system size) small spectral
gaps.

In order to approximate adiabatic evolution in the quantum circuit
model large quantum circuits are needed. =⇒ Inapplicable for NISQ
devices.
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Parameterized Perturbation Theory

Consider a Hamiltonian H0, an ansatz family U(θ) and initial angles θ∗

that produce the ground state of H0, i.e.,

θ∗ = argmin
θ

⟨ψ(θ)|H0 |ψ(θ)⟩ (4)

Question 1. Suppose that we perturb the Hamiltonian H0 by a small
amount λH2 with λ≪ 1. What is the shift vector ϵ that will translate the
system from the ground state |ψ(θ∗)⟩ of H0 at the ground state
|ψ(θ∗ + ϵ)⟩ of H0 + λH2?
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Parameterized Perturbation Theory

Theorem 1 (Informal). Consider a family of parameterized quantum
states |ψ(θ)⟩ and initial angles θ∗ that minimize a Hamiltonian H0, i.e.,
θ∗ = argminθ ⟨ψ(θ)|H0 |ψ(θ)⟩. If we perturb the Hamiltonian H0 by a
small amount λH2 with λ≪ 1, then the shift parameters ϵ that will
translate the system onto the perturbed ground state |ψ(θ∗ + ϵ)⟩ (at the
point θ∗ + ϵ) of Hλ = H0 + λH2 can be found by solving the following
mathematical problem:

min ||ϵ||
s.t. Aϵ+ Q = 0

Hλ
θ∗+ϵ ≽ 0

(5)

The matrix elements Aij ,Qj , and the Hessian, correspond to observables
that are calculated at the ground state of H0!
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Parameterized Perturbation Theory

The matrix elements Aij ,Qj are given by:

Qi = λ
∂

∂θi
(⟨ψ(θ)|H2 |ψ(θ)⟩)

∣∣∣∣
θ∗

(6)

Aij =
∂2

∂θi∂θj
(⟨ψ(θ)|Hλ |ψ(θ)⟩)

∣∣∣∣
θ∗
.

The derivatives and the Hessian can be calculated easily using
parameter-shift rules.

I. Kolotouros (University of Edinburgh) Adiabatic quantum computing with parameterized quantum circuitsApril 14, 2023 12 / 27



Adiabatic Quantum Computing with parameterized
quantum circuits

Algorithm (AQC-PQC). If the perturbation is chosen to be λ(H1 − H0),
the total perturbed Hamiltonian is:

Hλ = (1− λ)H0 + λH1 =⇒ Adiabatic Quantum Computing Hamiltonian
(7)

We can iteratively add perturbation of the form λ(H1 − H0), with λ ≡ 1
K

where K is the choice of discretization steps.

After K steps we will have approximated the ground state of the target
Hamiltonian H1.
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Adiabatic Quantum Computing with parameterized
quantum circuits
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Adiabatic Quantum Computing with parameterized
quantum circuits
Question 2. How many steps K do we need so that we reach the ground
state with certainty, provided that the ansatz family can reach all
intermediate ground states?

Theorem 2. Consider a time-dependent Hamiltonian
H(τ) = (1− τ)H0+ τH1, τ ≡ t

tf
∈ [0, 1]. Let ∆(τ) ≡ E1(τ)−E0(τ) be the

instantaneous spectral gap and δτ (λ) ≡ E0(τ + λ)− E0(τ) be the energy
difference between the ground states at time τ + λ and τ respectively.
Moreover, assume that the parameterized family of states contains the
ground state for each τ ∈ [0, 1] and |δτ (λ)| ≪ ∆(τ + λ). Then AQC-PQC
will always return the ground state of the target Hamiltonian H1 as long as
we discretize the time-dependent Hamiltonian into K > K0 where:

K0 ∈ O
(

poly(n)

minτ ∆(τ)

)
(8)
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Adiabatic Quantum Computing with parameterized
quantum circuits

Advantages over VQAs

Insensitive to initialization parameters which may lead to bad
convergence.

Requires no energy minimization.

No Barren Plateaux.

Only K quantum states preparations (although K may scale
exponentially).

Accuracy of the result depending on the choice of discretization steps.

O(KM3) expectation value calculations.
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Simulated Experiments

MaxCut. Consider a graph G (V ,E ) where V is the set of vertices, E is
the set of edges and let W be a weight matrix describing the weights of
the graph.

Goal. Our target is to find a partition of the vertices into two disjoint sets
that “cuts” the maximum number of edges. The MaxCut can be mapped
to an Ising Hamiltonian:

HMC = −
∑

⟨i ,j⟩∈E

wij

2

(
1− σzi σ

z
j

)
. (9)
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Simulated Experiments

Number Partitioning. Consider a list of integers {n1, n2, . . . , nN}.

Goal. Our target is to decide whether there exists a partition of the set
into two disjoint subsets S , S̄ so that the sums of the elements on each
subset are equal. The Number Partitioning problem can be mapped to an
Ising Hamiltonian:

HNP =
∑
i ̸=j

(ninj)σiσj +
N∑
i=1

n2i (10)
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Simulated Experiments

Transverse-Field Ising Chain. The Hamiltonian describing the TFI chain
model (with periodic boundary conditions) is:

HTFI = −
n∑

k=1

Jkσ
z
kσ

z
k+1 − h

n∑
k=1

σxk (11)

where (Jk , h) are coupling coefficients.
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Technical Details

Initial Hamiltonian for all problems examined: H0 = −
∑n

i=1 σ
x
i with

ground state |+⟩⊗n.

Ansatz family used for experiments:

All simulations were performed using QuEST and Qiskit allowing exact
noiseless calculations of expectation values.
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Choice of discretization steps.

Figure: MaxCut performance. Figure: TFI performance.

Accuracy improves with the increase of discretization steps!
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AQC-PQC vs VQE

Classical Optimization Problems:
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AQC-PQC vs VQE

Classical Optimization Problems:

MaxCut Optimal Solution Overlap (%)

7 Qubits 8 Qubits 9 Qubits 10 Qubits 11 Qubits 12 Qubits
AQC-PQC 82.7 74.3 93.1 50 28.1 56.6

VQE 62.3 54.7 60.8 39.2 22.1 11.1

Number Partitioning Optimal Solution Overlap (%)

7 Qubits 8 Qubits 9 Qubits 10 Qubits 11 Qubits 12 Qubits
AQC-PQC 37.5 21.9 24.7 12.6 5 4.6

VQE 28.5 6.2 6.4 1.2 0.8 0.4
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AQC-PQC vs VQE

Transverse-Field Ising Chain:
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Ansatz Expressiveness

Hk =

(
1− k

30

)
H0 +

k

30
HMC, k ∈ [30] (12)
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Discussion and Future work.

Optimal algorithm for solving the classical problem:

min ||ϵ||
s.t. Aϵ+ Q = 0

Hλ
θ∗+ϵ ≽ 0

Test performance and compare with VQE on larger instances.

Limitations?

Bounds on performance if ansatz cannot reach intermediate ground
states?

Bounds on performance if the quantum device has given accuracy on
angles?
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Thank you all.

“Adiabatic quantum computing with parameterized quantum circuits”, I.
Kolotouros, I. Petrongonas, M. Prokop, P. Wallden. (arXiv:2206.04373)
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