
A programming language characterizing

quantum polynomial time

Emmanuel Hainry, Romain Péchoux, Mário Silva
Université de Lorraine, Nancy, France

Model of a quantum program

 For qubits, input and output are unit-norm complex vectors in the bit state-space

1

Model of a quantum program

 For qubits, input and output are unit-norm complex vectors in the bit state-space

 Programs are reversible and norm-preserving Programs encode unitary transformations

1

Model of a quantum program

 For qubits, input and output are unit-norm complex vectors in the bit state-space

 Programs are reversible and norm-preserving Programs encode unitary transformations

 The outcome of the computation is the result of measuring the output:

1

Model of a quantum program

 For qubits, input and output are unit-norm complex vectors in the bit state-space

 Programs are reversible and norm-preserving Programs encode unitary transformations

 The outcome of the computation is the result of measuring the output:

 A function is successfully approximated by a program if

1

Motivation

quantum circuit

set of instructions

2

Motivation
Soundness: Does the encode a

 that grows polynomially on the size of
the input?

Completeness: For any such ,
can we always find a corresponding ?

set of instructions
family of circuits

polynomial transformation
program

set of instructions

quantum circuit

2

Related work
Bellantoni & Cook (1992) “A new recursion-theoretic characterization

of the polytime functions”

 class of functions sound and complete for FP

Selinger (2004) “Towards a quantum programming language”:
 simple programming language with loops and recursion

Dal Lago et al. (2010) “Quantum implicit computational complexity”
 quantum lambda calculus characterization of BQP

Yamakami (2020) “A schematic definition of quantum polynomial time
computability”

 class of functions sound and complete for FBQP

3

The syntax of FOQ
First-Order Quantum

4

The syntax of FOQ
First-Order Quantum

program body

procedure declarations

4

The syntax of FOQ

procedure declarations

 « decl proc[integer input](quantum input){S} »

quantum control

 « qcase cqubit of {0 -> S0, 1 -> S1}
 branches S0 and S1 cannot affect cqubit

(recursive) procedure call

 « call proc[integer](qubits) »

First-Order Quantum

4

5

(some) Denotational Semantics

6

(some) Denotational Semantics

The width of a procedure

Restrictions on recursion

WF programs (well-founded

 all mutually recursive calls decrease the number of qubits

 -> ensured termination

PFOQ programs (polynomial time

 all mutually recursive calls decrease the number of qubit

 -> ensured termination
at most one mutually recursive call per (quantum) branch

in polynomial time

8

Restrictions on recursion

WF programs (well-founded) -> ensured termination

PFOQ programs (polynomial time) -> ensured poly-time termination

8

Restrictions on recursion
Quantum
Fourier
Transform

9

Restrictions on recursion
Quantum
Fourier
Transform

9

Restrictions on recursion
Quantum
Fourier
Transform

9

Results

Soundness. If a PFOQ program successfully approximates some function , then is
in FBQP. (proof: simulation by a poly-time quantum Turing machine.)

Completeness. For any function in FBQP, there exists a PFOQ program that
successfully approximates . (proof: simulation of Yamakami’s function algebra.)

PFOQ ~ FBQP

PFOQ programs correspond to uniform families of poly-sized circuits

where

 All terminating programs (in particular WF programs) have an inverse program in FOQ.

10

Circuit compilation
11

Building a poly-sized circuitPFOQ program

12

Building a poly-sized circuitPFOQ program

Possible compilation strategy

12

Building a poly-sized circuit
13

grows in

Building a poly-sized circuit
14

With complexity we can merge k adjacent copies of the same unitary from different branches.

Circuit compilation
15

Circuit compilation
15

Circuit compilation
15

Circuit compilation
15

Guaranteeing adjacency
16

Guaranteeing adjacency
17

example: Composition

Guaranteeing adjacency
18

example: Procedure call (first occurrence of procedure and size)

Guaranteeing adjacency
19

example: Procedure call (not the first occurrence)

Building a poly-sized circuit

 Same-sized instances of a procedure can always be
merge

 In this case, all procedure calls can be computed
using only procedure instances

20

Conclusion

21

 FOQ is a first order quantum programming language with
quantum control and recursive procedures

 Syntactical restrictions allow for classes WF and PFOQ with
properties of (poly-time) termination

 PFOQ programs can be directly compiled into circuits that grow
polynomially on the size of the input

Future work
 Expand the syntax (while loops, measurements)

 Applying restrictions to established languages

(ProtoQuipper).

Thank you!

