

Data Encoding in Variational Q-Learning

Rodrigo Coelho

Supervisors: Prof. Luís Paulo Santos and André Sequeira

April 20, 2023

Contents

- 1. [Contextualization](#page-2-0)
- 2. [Reinforcement Learning](#page-4-0)
- 3. [Deep Reinforcement Learning](#page-16-0)
- 4. [Variational Q-learning](#page-21-0)
- 5. [Results](#page-32-0)
- 6. [Conclusion](#page-38-0)

Contextualization

Reinforcement Learning

Figure 1: The agent-environment interaction [[1](#page-41-1)]

The agent's goal is to maximize the sum of all the rewards during a sequence of time steps.

Examples of Reinforcement Learning

▶ Make a humanoid robot walk

. [Reinforcement Learning](#page-4-0) .

- ▶ Manage an investment portfolio
- ▶ Fly a drone

.

.

- ▶ Manage a power station
- ▶ Defeat the World Champion at Chess
- Play many games better than humans

Markov Decision Process

.

.

. [Reinforcement Learning](#page-4-0) .

- ▶ A state is considered a Markov state if it captures all relevant information from the past. Once the state is known, the history may be thrown away.
- ▶ An MDP is a sequence of Markov states.
- ▶ MDPs formally describe an environment for Reinforcement Learning (RL) where the environment is *fully observable*.

Markov Decision Process

A Markov Decision Process is a tuple *⟨S, A,P, R, γ⟩*

- \triangleright *S* is a finite set of Markov states
- ▶ *A* is a finite set of actions

.

.

. [Reinforcement Learning](#page-4-0) .

- \triangleright *P* is a state transition probability matrix, $P_{ss}^a = \mathbb{P}[S_{t+1} = s | S_t = s, A_t = a]$
- $\triangleright \mathcal{R}$ is a reward function, $R_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- $\triangleright \gamma$ is a discount factor $\gamma \in [0, 1]$

Return, Policy and Value-Function

The return G_t is the total discounted reward from time-step t

$$
G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}
$$

A policy π is a distribution over actions given states

.

.

. [Reinforcement Learning](#page-4-0) .

$$
\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]
$$

The state-value function is the expected return starting from state *s* and then following policy *π*

$$
v(s) = \mathbb{E}[G_t|S_t = s]
$$

Optimality

.

.

. [Reinforcement Learning](#page-4-0) .

The optimal state-value function *v∗*(*s*) is the maximum value function over all policies

$$
v_*(s) = \max_{\pi} v_{\pi}(s)
$$

For any MDP, there exists an optimal policy π_* , that is better than or equal to all other policies $\pi_* \geq \pi, \forall \pi$.

Policy-Based RL

[Reinforcement Learning](#page-4-0) .

Reimorceme

- ▶ A policy-based algorithm seeks to learn the optimal policy directly
- \blacktriangleright The policy is parametrized $\pi(a|s,\theta)$ and the goal is to find parameters *θ* such that the resulting policy is optimal
- ▶ This is done by maximizing a performance measure $J(\theta)$

Figure 2: Image from [[2](#page-41-2)]

Value-based RL

Reimorceme

[Reinforcement Learning](#page-4-0) .

- ▶ In a value-based algorithm, a value-function is learned and the policy is then implicitly given by this function
- ▶ The agent will always pick the action which yields the highest expected return according to the value-function

 -12

 -19

 -20

 -21

 -23

 -22

 -11

 -12

 -22

 -10

 -6

 -5

 -4

 -9

 -8

 -7

 -3

 \mathcal{L}

 -1

Goal

Figure 3: Image from [[2](#page-41-2)]

Action-Value Function

[Reinforcement Learning](#page-4-0)
000000000000

The action value function $q_{\pi}(s, a)$ is the expected return starting from state *s*, taking action *a*, and then following policy π

$$
q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]
$$

It can be decomposed into immediate reward plus discounted reward of successor state-action pair

$$
q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]
$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s, A_t = a]$
= $\mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$
= $\mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$

. [Reinforcement Learning](#page-4-0) . . . Q-Learning

The idea behind Q-Learning is to learn the optimal action-value function and, consequently, derive the optimal policy by maximizing over $q_*(s, a)$

 $\pi_*(a, s) = \text{argmax}_a q_*(s, a)$

To ensure sufficient exploration, a *ϵ*-greedy policy is used

$$
a_t = \begin{cases} \operatorname{argmax}_a q(s_t, a), & \text{with probability } 1 - \epsilon \\ \text{a random action}, & \text{with probability } \epsilon \end{cases}
$$

The Q-values are updated by the following rule,

.

.

$$
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t) \right]
$$

Tabular Reinforcement Learning

- ▶ So far, we have assumed that the value-functions are represented by lookup tables
- ▶ Problem with large MDPs (complex environments with large state and/or action spaces)
- \blacktriangleright Go $\rightarrow 10^{170}$ states

.

.

. [Reinforcement Learning](#page-4-0) .

▶ Agents need to generalize and come up with intelligent decisions!

Deep Reinforcement Learning

Function Approximators

- ▶ Solution for large MDP's:
	- ▶ Estimate value function with function approximation:

 $\hat{q}(s, a, w) \approx q_{\pi}(s, a)$

- ▶ Non-linear Function Approximators *→* Neural Networks
- But there are others...

. [Deep Reinforcement Learning](#page-16-0) .

Deep Neural Networks

Deep Reinforcement Learning

Deep Q-Network (DQN)

DQN uses an **experience replay** and a **target network**

- ▶ Take action *a^t* according to *ϵ*-greedy policy
- \triangleright Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- \triangleright Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- ▶ Compute Q-learning targets w.r.t old, fixed parameters *w −*
- ▶ Optimize MSE (or some other cost function) between Q-network and Q-learning targets

$$
\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a', w_i^-) - Q(s, a; w_i) \right)^2 \right]
$$

Variational Q-Learning

Variational Quantum Circuits (VQCs)

- ▶ VQC's are quantum circuits that depend on free parameters. They consist of three ingredients:
	- ▶ Preparation of an initial state (data-encoding)
	- \blacktriangleright A quantum circuit $W(\theta)$
	- ▶ Measurement of an observable at the output
- ▶ They are trained by a classical optimizer
- ▶ They are suitable for NISQ devices

VQC-based RL

- ▶ The same way Neural Networks can be used as function approximators in RL, so can VQCs
- ▶ The result is a hybrid quantum-classical algorithm
- ▶ It can and has been used for both policy-based [\[3\]](#page-41-3) [\[4\]](#page-42-0) and value-based [\[5](#page-42-1)][[6](#page-42-2)] algorithms successfully

[Variational Q-learning](#page-21-0)
○●○○○○○○○○○

Data Encoding

- ▶ **Continuous encoding**: Each component/feature *x* of an input state vector x is scaled to $x' = \arctan(x) \in [-\pi/2, \pi/2]$ and then rotated in the *X* direction by the angles *x′*
- \triangleright Number of qubits $=$ number of components

Assuming a state $s = [s_1, s_2, s_3, s_4]$

$$
\frac{R_x(\arctan(s_1))}{R_x(\arctan(s_2))}
$$

$$
\frac{R_x(\arctan(s_3))}{R_x(\arctan(s_3))}
$$

24 / 44

[Variational Q-learning](#page-21-0)
○○●○○○○○○○○

Q-Values and Output Scaling

▶ The Q-values of our quantum agent are computed as the expectation values of a VQC that is fed a state *s* as

$$
Q(s, a) = \langle 0^{\otimes n} | U_{\theta}^{\dagger}(s) O_a U_{\theta}(s) | 0^{\otimes n} \rangle
$$

- \blacktriangleright The model outputs a vector including Q-values for every possible action (O_a)
- Problem: Q-values can have any arbitrary range but expectation values are bounded.
	- ▶ Solution: Multiply the expectation values by a classical trainable weight such that the Q-values become

$$
Q(s, a) = \langle 0^{\otimes n} | U_{\theta}^{\dagger}(s) O_a U_{\theta}(s) | 0^{\otimes n} \rangle \cdot \omega_{O_a}
$$

Data Re-uploading

▶ The output of a VQC can be written as a Partial Fourier Series in the data where the frequencies are given by the data encoding gates and the coefficients by the rest of the circuit

$$
f\!(x) = \sum_{\omega \in \Omega} c_\omega e^{i\omega}
$$

▶ By repeating simple data encoding gates multiple times, we can reach a higher frequency spectra. **Figure 4:** Image from [[7](#page-43-0)]

Input Scaling

Multiplying the inputs by trainable weights allows for:

- ▶ Frequency matching between the output of the quantum model and the target function
- ▶ A frequency spectrum with access to more frequencies *→* increased expressivity of the quantum model

27 / 44

Assuming a state
$$
s = [s_1, s_2, s_3, s_4]
$$

$$
\frac{R_x(\arctan(s_1 * \lambda_1))}{R_x(\arctan(s_2 * \lambda_2))}
$$

$$
\frac{R_x(\arctan(s_3 * \lambda_3))}{R_x(\arctan(s_3 * \lambda_4))}
$$

Circuit Architecture

▶ If Data Re-uploading is being used, the whole circuit on the right is repeated in each layer. Otherwise, just the part that is not surrounded by the dashes is repeated.

[Variational Q-learning](#page-21-0)
○○○○○○●○○○○

Circuit Architecture

Circuit with two layers and no data re-uploading:

[Variational Q-learning](#page-21-0)
00000000000

Circuit with two layers and data re-uploading:

Environment - CartPole-v0

- ▶ Observation Space:
	- ▶ 1 Cart Position
	- ▶ 2 Cart Velocity
	- ▶ 3 Pole Angle
	- ▶ 4 Pole Angular Velocity
- ▶ Action Space:
	- ▶ Push cart to the left
	- ▶ Push cart to the right

The model in action

Let's imagine the model, which is a VQC with Data Re-uploading and two layers, interacts with the environment and observes state *s*:

s = [0*.*5*,* 2*.*5*,* 0*.*3*,* 2*.*1]

 $Q(s, \text{left}) = \langle Z_1 Z_2 \rangle \times \omega_1 = 70$ $Q(s, \text{right}) = \langle Z_3 Z_4 \rangle \times \omega_2 = 100$

Results

The effect of Data Re-uploading

Gradients

34 / 44

The effect of Output Scaling

Universal Quantum Classifier (UQC)

▶ The Universal Quantum Classifier (UQC) allows for an arbitrary number of qubits to encode the input

. [Results](#page-32-0) .

▶ Even one qubit is enough

A UQC with one qubit and *N* layers:

$$
|0\rangle + \boxed{U(\vec{\theta}_1, \vec{x})} + \cdots + \boxed{U(\vec{\theta}_N, \vec{x})} + \cdots
$$

Where each processing gate *U* is given by:

$$
U^{UAT}(\vec{x}; \vec{\omega}, \alpha, \varphi) = R_y(2\varphi) R_z(2\vec{\omega} \cdot \vec{x} + 2\alpha)
$$

UQC on CartPole

Conclusions

Conclusions

▶ Data Re-uploading is extremely important as it increases the expressivity of the quantum circuit

.

. .

. . [Conclusion](#page-38-0) . [References](#page-41-0)

- ▶ However, it seems like it leads to smaller gradients...
- ▶ Output scaling is also essential since it scales the expectation values to match the Q-values of the environment
- ▶ One qubit with data re-uploading is enough to solve CartPole

Future Work

▶ Finding an optimal set of hyperparameters for the UQC (model seems highly unstable)

.

. .

. . [Conclusion](#page-38-0) . [References](#page-41-0)

- ▶ Studying the Hessian Matrix to further confirm the claim that data re-uploading decreases the trainability of the models
- ▶ Experimenting the UQC with more qubits
- ▶ Testing on different environments

Discussion

References I

[Conclusion](#page-38-0) . [References](#page-41-0)

- [1] R. S. Sutton and A. G. Barto, *Reinforcement learning: An introduction*. MIT press, 2018.
- David Silver (Deepmind), *Introduction to reinforcement learning with david silver*,

url: [https://www.deepmind.com/learning-resources/introduction](https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver)[to-reinforcement-learning-with-david-silver](https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver), 2015.

[3] S. Jerbi, C. Gyurik, S. Marshall, H. J. Briegel, and V. Dunjko, "Variational quantum policies for reinforcement learning," *arXiv preprint arXiv:2103.05577*, 2021.

References II

[Conclusion](#page-38-0) . [References](#page-41-0)

- [4] A. Sequeira, L. P. Santos, and L. S. Barbosa, "Variational quantum policy gradients with an application to quantum control," *arXiv preprint arXiv:2203.10591*, 2022.
- [5] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan, "Variational quantum circuits for deep reinforcement learning," *IEEE Access*, vol. 8, pp. 141 007–141 024, 2020.
- [6] A. Skolik, S. Jerbi, and V. Dunjko, "Quantum agents in the gym: A variational quantum algorithm for deep q-learning," *Quantum*, vol. 6, p. 720, 2022.

References III

[Conclusion](#page-38-0) . [References](#page-41-0)

- M. Schuld, R. Sweke, and J. J. Meyer, "Effect of data encoding on the expressive power of variational quantum-machine-learning models," *Physical Review A*, vol. 103, no. 3, p. 032 430, 2021.
- [8] C. J. Watkins and P. Dayan, "Q-learning," *Machine learning*, vol. 8, no. 3, pp. 279–292, 1992.
- [9] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, "Data re-uploading for a universal quantum classifier," *Quantum*, vol. 4, p. 226, 2020.