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Reinforcement Learning
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Figure 1: The agent-environment interaction [1]

action
A,

The agent’s goal is to maximize the sum of all the rewards during a sequence of

time steps.
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Examples of Reinforcement Learning

» Make a humanoid robot walk

» Manage an investment portfolio

» Fly a drone

» Manage a power station

» Defeat the World Champion at Chess

» Play many games better than humans
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Markov Decision Process

» A state is considered a Markov state if it captures all relevant information from
the past. Once the state is known, the history may be thrown away:.

» An MDP is a sequence of Markov states.

» MDPs formally describe an environment for Reinforcement Learning (RL)
where the environment is fully observable.
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Markov Decision Process

A Markov Decision Process is a tuple (S, A, P, R, )
» S is a finite set of Markov states

» A is a finite set of actions

» P is a state transition probability matrix, PY, = P[Si = o/|S; = s, Ay =

» R is a reward function, R? = E[R1|S; = s, Ay = g

» ~ is a discount factor v € [0, 1]
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Return, Policy and Value-Function

The return G is the total discounted reward from time-step ¢
0

Gi= Rip1 +YRepo + ... = Z VR g
k=0

A policy 7 is a distribution over actions given states
m(als) = P[A; = a|S; = 4

The state-value function is the expected return starting from state s and then
following policy m

v(s) = E[Gy|S; = s
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Optimality

The optimal state-value function v (s) is the maximum value function over all
policies
U4(8) = max vy ()
(0

For any MDP, there exists an optimal policy ., that is better than or equal to all
other policies m, > m, V.
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Policy-Based RL

» A policy-based algorithm seeks to
learn the optimal policy directly

» The policy is parametrized m(als, 0)
and the goal is to find parameters 6
such that the resulting policy is
optimal

» This is done by maximizing a
performance measure J(0)

Figure 2: Image from [2]
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Reinforcement Learning

Value-based RL

. A4 | A3 |12 | 11 | 10 | -8
» In a value-based algorithm, a

value-function is learned and the Start | -16 | -15 -12 8
policy is then implicitly given by this 16 | 17 6 | 7
function 8 | 1 .

24 -20 4 | -3

» The agent will always pick the action
which yields the highest expected 23 | 22 | 21 | 22 -2
return according to the value-function

|
—

Goal

Figure 3: Image from [2]
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Action-Value Function

The action value function ¢, (s, a) is the expected return starting from state s,
taking action a, and then following policy «

08, a) = E |Gy S; = s, Ay = 4

[t can be decomposed into immediate reward plus discounted reward of successor
state-action pair

¢x(s, a) = E[Gy Sy = s, Ay = 4

= E |[Rip1 +vRio + ’YQRHS + .| S =5, A= 4
= Ew:Rt—l—l + ’)/Gt_|_1|St = S, At = a]

=K

W:Rt‘i—l + ’YQW(StJrla At+1)|St = 5, A= a]
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(Q-Learning

The idea behind Q-Learning is to learn the optimal action-value function and,
consequently, derive the optimal policy by maximizing over ¢.(s, a)

m«(a, s) = argmax, g (s, a)
To ensure suflicient exploration, a e-greedy policy is used

{argmaxaq(st, a),  with probability 1 — €
ar =

a random action, with probability e

The Q-values are updated by the following rule,

Qst, ) = Qv a0) + | Riy + 7 max Qlstin, a) = Qs 0|
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Tabular Reinforcement Learning

» So far, we have assumed that the value-functions are represented by lookup
tables

» Problem with large MDPs (complex environments with large state and/or
action spaces)

» Go — 1017 states

» Agents need to generalize and come up with intelligent decisions!
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Deep Reinforcement
Learning



Function Approximators

» Solution for large MDP’s:

» Eistimate value function with function approximation:
» Non-linear Function Approximators — Neural Networks

» But there are others...
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Deep Reinforcement Learning

Environment ]<
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Deep Q-Network (DQN)

DQN uses an experience replay and a target network

» Take action a; according to e-greedy policy

» Store transition (S, az, 7411, Str1) in replay memory D

» Sample random mini-batch of transitions (s, a, r, s/) from D
» Compute Q-learning targets w.r.t old, fixed parameters w™

» Optimize MSE (or some other cost function) between Q-network and Q-learning
targets

2
£z(wz> — Es,a,r,s/NDZ- [(T"l' 8 mE}X Q(S/a al: wz_) o Q(Sa a, wz)) ]
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Variational Q-Learning



» VQC’s are quantum circuits that depend
on free parameters. They consist of three
ingredients:

» Preparation of an initial state
(data-encoding)

» A quantum circuit W(6) o /(:,,) | W® M . e

» Measurement of an observable at the 10 . I e

output S —
xr

(] 104

» They are trained by a classical optimizer

» They are suitable for NISQ) devices
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VQC-based RL

» The same way Neural Networks can be

used as function approximators in RL, so
can VQCs

» The result is a hybrid quantum-classical
algorithm

» It can and has been used for both S‘;“’
policy-based (3] [4] and value-based [5] [6] r
algorithms successfully

0} ¥
(:"_ S(@) || W) M |E
0} H
Agent
reward
R.'
E Rl'+l [
—— .
.. | Environment ]4—

action

A
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Data Encoding

» Continuous encoding: Each Assuming a state s = [s1, s, 83, 84
component /feature z of an input state
vector x is scaled to
2/ = arctan(z) € |—n/2,7/2] and then
rotated in the X direction by the
angles af

» Number of qubits = number of
components
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Q-Values and Output Scaling

» The Q-values of our quantum agent are computed as the expectation values of a
VQC that is fed a state s as

s, @) = (0°"| Uy(5) Ouli(s) [0°)
» The model outputs a vector including Q-values for every possible action (O,)

» Problem: QQ-values can have any arbitrary range but expectation values are

bounded.

» Solution: Multiply the expectation values by a classical trainable weight such that
the Q-values become

Q(s, a) = (02" Ul(s) O, Up(s) [0°™) - wo,
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Data Re-uploading

» The output of a VQC can be written as a

Partial Fourier Series in the data where
the frequencies are given by the data

encoding gates and the coefficients by the

rest of the circuit

o) =3 e

wel)

» By repeating simple data encoding gates
multiple times, we can reach a higher
frequency spectra.

— layer 1 — — layer 2 layer L

LR - R
2 s@| |E|ls@ |- |L]|s@ |3
o4 I H | =
0) - s M HA

|

'|| trainable
\/\ '|| circuit block
1
|
\/\/ I'n

data encoding
A/\/\/\ circuit block

Figure 4: Image from [7]
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Input Scaling

Multiplying the inputs by trainable

weights allows for: Assuming a state s = [sq1, S2, $3, S4]

» EFrequency matching between the
output of the quantum model and the
target function

Larctan(s; * A\

Larctan(sy * Ao

» A frequency spectrum with access to
more frequencies — increased
expressivity of the quantum model

R
R
R
R

(arctan(s; * A1)

(arctan(s; * A2))
Jarctan(sz % Az)) |~

(arctan(sy * Ay))

Larctan(sy * A4
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Circuit Architecture

» If Data Re-uploading is being used, i B() | By(On) [ B:A012)
the whole circuit on the right is 1 Ry(m3) +— Ry(021) H R.(6) i
repeated in each layer. Otherwise, just i E
the part that is not surrounded by the 7] Ro(w3) -— Ry(031) — R.(032)
dashes is repeated. % Ro(z) : Ry(00) - Ro(010)
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Environment - CartPole-v0

» Observation Space:

» 1 - Cart Position _ _
pivot point

» 2 - Cart Velocity
» 3 - Pole Angle /

» 4 - Pole Angular Velocity
» Action Space: left | right

» Push cart to the left
» Push cart to the right

30 / 44



The model in action

Let’s imagine the model, which is a VQC with Data Re-uploading and two layers,
interacts with the environment and observes state s:

s=1[0.5,2.5,0.3,2.1]

”””””””””””

— Ry(arctan(0.5 x A1) — Ry(611) = Ra(612) R,(arctan(0.5 X A;)) F— Ry(611) | R.(612) A (&)
+ R,(arctan(2.5 X Ag)) % R,(021) — R.(6) Ry(arctan(2.5 X Ag)) — Ry(f21) — R.(03) A (%)
+ Ry (arctan(0.3 x Ag)) % Ry(631) - R.(63,) Ry(arctan(0.3 x Ag)) F—| R,(631) — R.(6s)) Az
+ R,(arctan(2.1 X Ay)) % R,(011) H R.(01) Ry(arctan(2.1 X Ay)) F— Ry(041) | R.(0.2) A ()

,,,,,,,,,,,,,,,,,,,

Q(s, left) = (Z1725) x w1 =70
Q S, Iight) = <Z324> X Wy = 100

/N
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Results



The effect of Data Re-uploading

—— No Data Re-uploading
—— Data Re-uploading
200 +
150
c
|-
=
@
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T T T T T T T
0 500 1000 1500 2000 2500 3000
Episode
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Gradients

Mean of the norm of the gradient vectors Variance of the gradients
—— No Data Re-uploading 1754 — Mo Data Re-uploading
80 1 —— Data Re-uploading —— Data Re-uploading
15.0 -
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c 8 100
o c
o e
s 404 =
L 75
5.0
20 4
2.5
04 0.0
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Training step Training step
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The effect of Output Scaling

200 4
175 1
—— Mo Data Re-uploading, Mo Output Scaling
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» The Universal Quantum Classifier (UQC) allows for an arbitrary number of

qubits to encode the input
» Even one qubit is enough

A UQC with one qubit and N layers:

0) ~ U@y, 7)1 Ullly, 3) —

Where each processing gate U is given by:
U (%6, a, ) = Ry(20)R,(23 - T+ 2a)
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UQC on CartPole

—— Non-Optimal Hyperparameters
—— Optimal Hyperparameters
200
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Conclusions



Conclusions

» Data Re-uploading is extremely important as it increases the expressivity of the
quantum circuit

» However, it seems like it leads to smaller gradients...

» Output scaling is also essential since it scales the expectation values to match
the Q-values of the environment

» One qubit with data re-uploading is enough to solve CartPole
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Future Work

» Finding an optimal set of hyperparameters for the UQC (model seems highly
unstable)

» Studying the Hessian Matrix to further confirm the claim that data
re-uploading decreases the trainability of the models

» Experimenting the UQC with more qubits

» Testing on different environments
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