QuantUM seminar *28th April 2023*

Universidade do Minho Escola de Engenharia

Noise Resilient Quantum Amplitude Estimation

Alexandra Ramôa

Work supervised by:

- *Luís P. Santos*
	- *Ernesto F. Galvão*

Overview

- 1. Quantum searching
- 2. Quantum amplitude

estimation

- 3. Noisy quantum devices
- 4. Numerical results

5. Overview and numerical

analysis of QAE

algoritms

6. Bayesian amplitude

estimation

3 Quantum resources can bring a **quadratic speed up** to the task of **searching an unstructured**

Mathematically:

$$
f(x) : \{0,1\}^n \to \{0,1\}
$$

 $f(x) = \begin{cases} 1$, if x is a solution;
0, otherwise.

find x s. t. $f(x) = 1$

$$
f(x) = \begin{cases} 1, & \text{if } x \text{ is a solution;} \\ 0, & \text{otherwise.} \end{cases}
$$

Classical approach:

$$
\begin{aligned}\n\text{Cost} \\
\sum_{k=1}^{N} \frac{1}{N} \cdot k &= \frac{1}{N} \cdot \left(\frac{N(N+1)}{2} \right) = \frac{N+1}{2} \\
&\in \quad O(N)\n\end{aligned}
$$

1. Sample uniformly at random.

or if there are >1 solutions:

- 2. If , terminate.
- 3. Go to 1.

 $O(N/M)$

Assume we can encode as a quantum phase oracle .

$$
f(x) = \begin{cases} 1, & \text{if } x \text{ is a solution;} \\ 0, & \text{otherwise.} \end{cases}
$$
 $\hat{U}_f | x \rangle = (-1)^{f(x)} | x \rangle$

ntum approach:

The a superposition $1 \psi_A$) = A | 0)^{®n} containing the solution.

Quantum approach:

The repare a superposition $|\psi_A\rangle = A |0\rangle^{\otimes n}$ containing the solution.

E.g. use the Hadamard transform: $|\psi_A\rangle = H^{\otimes n} |0\rangle^{\otimes n} = \frac{1}{\sqrt{N}} \sum_{x \in I_0} |x\rangle$

Call the subset of solutions, its complementary in . Define:

$$
\mid \Psi_1 \mid = \sqrt{\frac{1}{M}} \sum_{x \in X} \mid x \mid \qquad \ \ ; \qquad \ \mid \Psi_0 \mid = \sqrt{\frac{1}{N-M}} \sum_{x \in X^c} \mid x \mid
$$

Then

:

 $|\psi_{A}\rangle = \sqrt{a} |\psi_{1}\rangle + \sqrt{1-a} |\psi_{0}\rangle$ $a \equiv \frac{M}{N}$

Quantum approach:

ntum approach:

- Prepare a superposition $1 \psi_A$) = A | 0)^{®n} containing the solution.
- Amplify the pre-image of 1 under via quantum amplitude amplification (

Quantum approach:

Prepare a superposition $|\psi_A\rangle = A |0\rangle^{\otimes n}$ containing the solution.

Amplify the pre-image of 1 under via quantum amplitude amplification (

Definition
$$
\theta = \arcsin(\sqrt{a}) \leftrightarrow a = \sin^2(\theta)
$$

\nThen $|\psi_A\rangle = \sqrt{a} |\psi_1\rangle + \sqrt{1 - a} |\psi_0\rangle$

\nbecomes

 $|\psi_{A}\rangle = \sin(\theta) |\psi_{1}\rangle + \cos(\theta) |\psi_{0}\rangle$

$$
\hat{G} = - A \,\hat{U}_0 \, A^{-1} \,\hat{U}_f
$$

 $\hat{\mathbf{G}}^m \mid \psi_\mathtt{A} \; \rangle = \sin((2m+1)\theta) \mid \psi_\mathtt{1} \; \rangle + \cos((2m+1)\theta) \mid \psi_\mathtt{0} \; \rangle$

$$
|\langle \psi_1 | \hat{G}^m | \psi \rangle|^2 = \sin^2((2m+1)\theta)
$$

$$
(2m_{\text{ideal}} + 1)\theta = \pi/2
$$

Quantum approach:

Prepare a superposition $|\psi_A\rangle = A |0\rangle^{\otimes n}$ containing the solution.

Amplify the pre-image of 1 under via quantum amplitude amplification (

Quantum approach:

- Prepare a superposition $|\psi_A\rangle = A |0\rangle^{\otimes n}$ containing the solution.
- Amplify the pre-image of 1 under via quantum amplitude amplification (

ntum approach:

- The repare a superposition $1 \psi_A$) = A | 0)^{®n} containing the solution.
- Implify the pre-image of 1 under via quantum amplitude amplification (
- 1easure to find a solution with high probability.

Quantum approach:

The repare a superposition $|\psi_A\rangle = A |0\rangle^{\otimes n}$ containing the solution.

Implify the pre-image of 1 under via quantum amplitude amplification (

1easure to find a solution with high probability.

Quantum approach:

repare a **superposition** $|\psi_A\rangle = A |0\rangle^{\otimes n}$ containing the solution.

2. Proplify the pre-image of 1 under via quantum amplitude amplification

16 **3. I easure** to find a solution with high probability. $|\mathcal{V}|\$
= $\sqrt{1}$ $\frac{1}{2}$ amp $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ measure with *measure* $\overline{\text{degree}}$ with high **chability** large $|\psi\rangle =$ 0 $\frac{1}{2}$ $+\sqrt{1-a_{\text{an}}}\sqrt{0}$ 0 $\overline{\overline{\mathbf{0}}}_{\mathit{fdr} \; \mathit{la}}$ \mathscr{F} $\Big|$ $\frac{C}{C}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{1} + \sqrt{N - \frac{1}{N}}$ $\frac{1}{1}$ 0 $|\mathcal{V}\rangle$ $\frac{1}{2} + \sqrt{N - \frac{1}{2}}$

Quantum amplitude estimation (QAE) is related to

quantum searching; it occurs in the same framework,

and offers the same **quadratic speed-up**. It consists

on the task of estimating the parameter : $|\psi\rangle = \sqrt{a_{\psi}}$ $\overline{\mathbf{\theta}}$ $\frac{1}{2}$ $+$ +√1*−*| $\mathbf{0}$ $\frac{1}{\sqrt{2}}$

It becomes relevant when the problem is generalized to consider more than one distinguished item, or even fractional amounts thereof – so that **a can be any real**

$$
|\psi\rangle = \sqrt{a_{\psi}^0}
$$
 + $\sqrt{1-a_{\psi}^0}$ $\left| \bigcup_{i=1}^{n} \frac{1}{i} a_{\psi}^0 - a_{\psi}^0 a_{\psi}^0 \right|$

Classical approach: sum over samples. $\frac{1}{N}\sum f(x) = \frac{1}{N}\sum x = \frac{1}{N}M = a$ $\epsilon \in O(1/\sqrt{K})$

We measure one of two eigenphases: or

$$
\epsilon \in O(1/K)
$$

This estimation task is a fundamental routine, with a

wide range of applications in **chemistry**, **machine**

learning and **statistics**.

In particular, it can be used to **speed-up Monte**

$$
\mathbb{E}_{p(x)}[f(x)] = \int_{\Omega} f(x)p(x)dx
$$

$$
\mathbb{E}_{p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(x_i) \cdot p(x_i)}{\pi(x_i)} \qquad \{x_i\}_{i=0}^{N-1} \sim \pi(\cdot)
$$

$$
\int_{X} \sum_{i=0}^{N-1} p(x)f(x) \qquad \text{for a uniform PMF}
$$

Define **distribution loading** and **function encoding**

$$
P | 0 \rangle^{\otimes n} = \sum_{x=0}^{2^n - 1} \sqrt{p(x)} | x \rangle \qquad R | x \rangle | 0 \rangle = | x \rangle \left(\sqrt{f(x)} | 1 \rangle + \sqrt{1 - f(x)} | 0 \rangle \right)
$$

$$
R(P \otimes I_1) | 0 \rangle^{\otimes n} = \sum_{x=0}^{2^n - 1} \sqrt{p(x)} | x \rangle \left(\sqrt{f(x)} | 1 \rangle + \sqrt{1 - f(x)} | 0 \rangle \right)
$$

Rewrite in terms of orthonormal subspaces and normalize to get:

$$
|\psi\rangle = |\psi_1\rangle + |\psi_0\rangle = \sqrt{a} |\tilde{\psi}_1\rangle + \sqrt{1-a} |\tilde{\psi}_0\rangle
$$

$$
a \equiv \sum_{x} p(x) f(x) = \mathbb{E}_{p(x)} [f(x)]
$$

We have an amplitude estimation problem!

Define **distribution loading** and **function encoding**

$$
P | 0 \rangle^{\otimes n} = \sum_{x=0}^{2^n - 1} \sqrt{p(x)} | x \rangle \qquad R | x \rangle | 0 \rangle = | x \rangle \left(\sqrt{f(x)} | 1 \rangle + \sqrt{1 - f(x)} | 0 \rangle \right)
$$

$$
R(P \otimes I_1) | 0 \rangle^{\otimes n} = \sum_{x=0}^{2^n - 1} \sqrt{p(x)} | x \rangle \left(\sqrt{f(x)} | 1 \rangle + \sqrt{1 - f(x)} | 0 \rangle \right)
$$

Rewrite in terms of orthonormal subspaces:

$$
|\psi_1\rangle = \sum_{x=0}^{2^n-1} \sqrt{p(x)} \sqrt{f(x)} |x\rangle |1\rangle \qquad |\psi_0\rangle = \sum_{x=0}^{2^n-1} \sqrt{p(x)} \sqrt{1 - f(x)} |x\rangle |0\rangle
$$

Normalize to $|\psi\rangle = |\psi_1\rangle + |\psi_0\rangle = \sqrt{a} |\tilde{\psi}_1\rangle + \sqrt{1-a} |\tilde{\psi}_0\rangle$ get:

We have an amplitude estimation nrohlaml

$$
a \equiv \sum_{x} p(x) f(x) \approx \mathbb{E}_{p(x)}[f(x)]
$$

Our **initialization** and **oracle**

operators are now:

 $A \equiv R(P \otimes I_1)$

 $\hat{U} = (I_n \otimes Z)$

Example: integrate $\int \frac{\sin^2(x) dx}{\sin^2(x)} dx$ using a uniform importance distribution.

$$
R | x \rangle | 0 \rangle = | x \rangle \left(\sin \left(\frac{(x + \frac{1}{2})b_{\text{max}}}{2^n} \right) | 1 \rangle + \cos \left(\frac{(x + \frac{1}{2})b_{\text{max}}}{2^n} \right) | 0 \rangle \right) \longrightarrow R = \prod_{k=1}^{n} C^{(k)} R_y \left(\frac{b_{\text{max}} \cdot x_k}{2^{n-k}} \right) \left(I_n \otimes R_y \left(\frac{b_{\text{max}}}{2^n} \right) \right)
$$

$$
= \frac{b_{\text{max}}}{2^n} / 2 + \sum_{k=1}^{n} \frac{b_{\text{max}} \cdot x_k}{2^{n-k}} / 2
$$

$$
P = H^{\otimes n}
$$

e can calculate the measurement probability for any bit strin

$$
P(\text{measuring } x \mid QAE(\theta)) = \frac{P(\text{measuring } x \mid QPE(\theta/\pi)) + P(\text{measuring } x \mid QPE(1 - \theta/\pi))}{2}
$$

with

$$
P(\text{measuring } x \mid QPE(\phi)) = \frac{\sin^2(K\Delta\pi)}{K^2 \sin^2(\Delta\pi)},
$$

where Δ is a circular distance, and also the error in the estimate produced by x:

$$
\Delta = \left| \phi - \frac{x}{K} \right| \mod 1.
$$

When is an integer, we retrieve the exact solution by measuring.

Example bar plot (deterministic case):

• 50 measurements

$$
x=0 b 010=2 \to \theta = \frac{x \pi}{K} = \frac{2\pi}{8}
$$

$$
x=0 b 110=6 \to \theta = \frac{x \pi}{K} = \frac{6\pi}{8}
$$

Example bar plot: When is not an integer, the outcome distribution is not so neat.

We can still translate it into the amplitude domain:

• 50 measurements

• 50 measurements

Rather than sticking to a grid, we can use our knowledge of the outcome distribution to sweep over a continuum of values for .

Quantum Inf **7**, 52 (2021).

33

As such, **alternative strategies** have been proposed to achieve **quantum-enhanced precision** in more **hardware-friendly** ways.

process the results somehow

The overarching idea is to use **quantum amplitude amplification** to make **more**

achiev**ihformative** measurements.

resources

classicaly

$Binomial(\ p(\theta), \boldsymbol{N}_{shots})$

Classically, we can sample from:

Quantum-enhanced

measurements allow:

for any odd integer

With ,

Preparing entails queries to A (forwards or backwards):

- for the initialization of
- for the applications of

It also requires queries to the oracle, one for each application of .

We can sample according to the probability

using a number of queries is in .

How to use these measurements is an open question. Each answer brings a different **quantum advantage**, **classical overhead** and **noise resilience**.

Overview and numerical analysis of QAE algoritms

Textbook QAE

Scaling of the estimation error in a with the number of queries to A

Scaling of the estimation error in a with the number of queries to A

 a Unif ζ

Classical Amplitude Estimation

Compare with the classical case:

Scaling of the estimation error in a with the number of queries to A

Maximum Likelihod QAE

By Suzuki et al, 2020.

Maximum Likelihod QAE

- Original proposal (Suzuki et al): ;
- Spin offs:
	- Variational QAE
	- Low depth $QAIN \in O(1/\epsilon^{1+\beta})$ and $D \in O(1/\epsilon^{1-\beta})$
		- Power Law: , a controllable parameter
		- QoPrime

Maximum Likelihod QAE

44

45

Quantum Amplitude Estimation

A note on performance benchmarking for adaptive algorithms

• Sample an x (representing N) coordinate uniformly at random on a log scale.

 $x \sim$ unif_{log} ([x_{min} , x_{max}])

• Sample auxiliary variables z depending on x :

 $z \sim N(\mu, \sigma(x))$.

 $\sigma(x) \propto 1/x$.

where

The choice of the mean μ is arbitrary, whereas the constant of proportionality is determined by fixing a point.

• Calculate y (representing ϵ^2) as $y = (x - \mu)^2$.

QAE, simplified

Pre-processing phase

Exponential refinement phase

Reduce the search range to $[\theta_{min}, \theta_{max}]$, with $\frac{\theta_{max}}{\theta_{min}} = 1.65$. \rightarrow dynamic

By Aaronson et al, \cap

QAE, simplified

 $a = 0.5$,

Scaling of the estimation error in a with the number of queries to A

Simpler QAE

By Wie, 2020.

Simpler QAE

49

Faster QAE

First stage

Learn by inverting the results of Grover measurements with increasing amplification, until they become ambiguous.

Second stage

Continue to learn by complementing the former Grover measurements with additional ones for disambiguation.

Faster QAE

Iterative QAE

By Grinko et al, 2021. Modified version by Fukuzawa et al, 2022.

Iterative QAE

 $a = 0.5$,

Summary

Summary

 $a = 0.1$,

Bayesian amplitude estimation

Bayesian inference

offers a natural paradigm

for solving this problem.

Unlike less general

protocols, it inherently

- offers: • The possibility of incorporating **noise models**;
- **Flexibility** to tailor the protocol;
- 56 • Various ways of negotiating the **trade-offs**

$$
\mathbf{P}(\theta | D) = \frac{\mathbf{L}(\theta | D; E)\mathbf{P}(\theta)}{\mathbf{P}(D; E)}
$$

Bayesian amplitude estimation

 $q=1$

mean results

Bayesian amplitude estimation

We can make the most of the open-endedness of Bayesian inference by:

- Properly handling **noise**;
- Using the **flexibility** to our benefit;
- Seeking the best **cost-to-benefit** ratio (across several types of *benefit* - quantum enhancement, noise resilience – and cost – classical processing, online processing, optimization, discretization, quantum resources, quantum

depth, overheads).

Robust amplitude estimation

- Bayesian inference with engineered likelihood functions
- Greedy variance reduction (adaptively minimize proxies thereof)
- Work under a Gaussian assumption (making the representation analytically tractable
- Simple noise model

By Wang et al, 2021.

Conclusion

- All **QAE algorithms suffer with** the presence of **noise**, but they **are affected differently**: strategies with better idealized behavior may actually do worse once noise is introduced.
- We can expect that different **algorithms respond differently to different types of noise**, both qualitatively and quantitatively.
- Often, **algorithm design focuses on "hardware-friendly" circuits**. To make the most out of the available resources, the **processing should be "hardware-friendly"** as well.

Thank you for your attention!

Questions?