#### **QuantUM seminar**

28th April 2023



Universidade do Minho Escola de Engenharia

### Noise Resilient Quantum Amplitude Estimation

Alexandra Ramôa

Work supervised by:

- Luís P. Santos
  - Ernesto F. Galvão







## Overview

- 1. Quantum searching
- 2. Quantum amplitude

estimation

- **3.** Noisy quantum devices
- 4. Numerical results

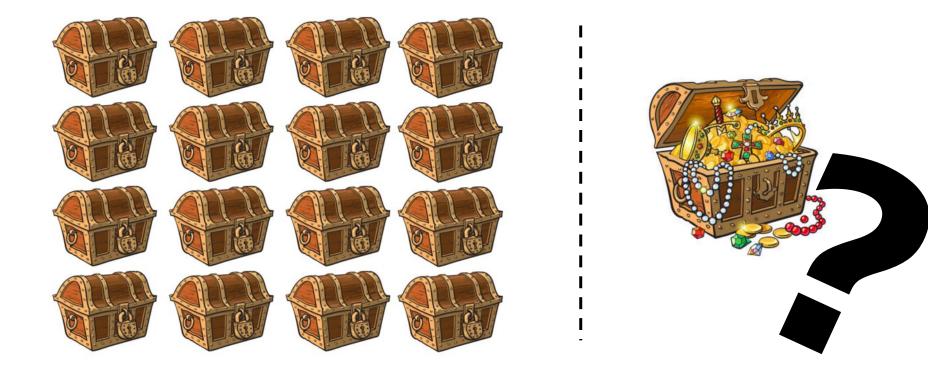
**5.** Overview and numerical

analysis of QAE

algoritms

6. Bayesian amplitude

estimation



Quantum resources can bring a **quadratic speed up** to the task of **searching an unstructured** 

Mathematically:

$$f(x) \, : \, \{0,1\}^n \, \to \, \{0,1\}$$

 $f(x) = \begin{cases} 1 , \text{ if } x \text{ is a solution;} \\ 0 , \text{ otherwise.} \end{cases}$ 



find x s. t. 
$$f(x) = 1$$



$$f(x) = \begin{cases} 1 \text{, if } x \text{ is a solution;} \\ 0 \text{, otherwise.} \end{cases}$$

#### **Classical approach:**

$$Cost$$

$$\sum_{k=1}^{N} \frac{1}{N} \cdot k = \frac{1}{N} \cdot \left(\frac{N(N+1)}{2}\right) = \frac{N+1}{2}$$

$$\in O(N)$$

1. Sample uniformly at random.

or if there are >1 solutions:

- 2. If , terminate.
- 3. Go to 1.

O(N/M)

Assume we can encode as a quantum phase oracle .

$$f(x) = \begin{cases} 1 \text{, if } x \text{ is a solution;} \\ 0 \text{, otherwise.} & \hat{U}_{f} \mid x \rangle = (-1)^{f(x)} \mid x \rangle \end{cases}$$

#### ntum approach:

repare a superposition

 $|\psi_{\mathbf{A}}\rangle = \mathbf{A} |0\rangle^{\otimes n}$ 

containing the solution.

#### ntum approach:

repare a superposition  $|\psi_A\rangle = A|0\rangle^{\otimes n}$  containing the solution.

E.g. use the Hadamard transform:  $|\psi_A\rangle = H^{\otimes n} |0\rangle^{\otimes n} = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle$ 

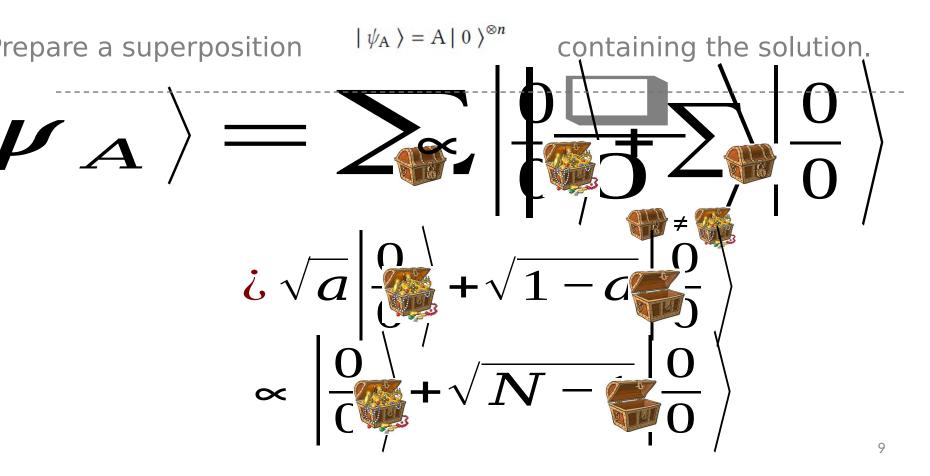
Call the subset of solutions, its complementary in . Define:

$$\mid \Psi_1 \rangle = \sqrt{\frac{1}{M}} \sum_{x \in X} \mid x \rangle \qquad ; \qquad \mid \Psi_0 \rangle = \sqrt{\frac{1}{N - M}} \sum_{x \in X^c} \mid x \rangle$$

Then

$$|\psi_{\rm A}\rangle = \sqrt{a} |\psi_1\rangle + \sqrt{1-a} |\psi_0\rangle \qquad a \equiv \frac{M}{N}$$

#### ntum approach:



#### ntum approach:

- Prepare a superposition  $|\psi_A\rangle = A |0\rangle^{\otimes n}$  containing the solution.
- Amplify the pre-image of 1 under via quantum amplitude amplification (

#### ntum approach:

Prepare a superposition  $|\psi_A\rangle = A|0\rangle^{\otimes n}$  containing the solution.

Amplify the pre-image of 1 under via quantum amplitude amplification (

Defin 
$$\theta = \arcsin(\sqrt{a}) \leftrightarrow a = \sin^2(\theta)$$
  
e  
Then  $|\psi_A\rangle = \sqrt{a} |\psi_1\rangle + \sqrt{1-a} |\psi_0\rangle$   
becomes  
 $|\psi_A\rangle = \sin(\theta) |\psi_1\rangle + \cos(\theta) |\psi_0\rangle$ 

$$\hat{\mathbf{G}} = -\,\mathbf{A}\,\hat{\mathbf{U}}_0\,\mathbf{A}^{-1}\,\hat{\mathbf{U}}_{\mathbf{f}}$$

 $\hat{\mathbf{G}}^{m} \mid \psi_{\mathbf{A}} \rangle = \sin((2m+1)\theta) \mid \psi_{1} \rangle + \cos((2m+1)\theta) \mid \psi_{0} \rangle$ 

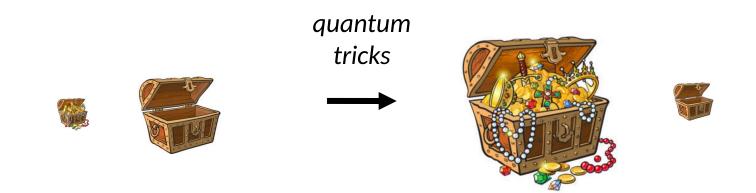
$$|\langle \psi_1 | \hat{\mathbf{G}}^m | \psi \rangle|^2 = \sin^2((2m+1)\theta)$$

$$(2m_{\text{ideal}} + 1)\theta = \pi/2$$

ntum approach:

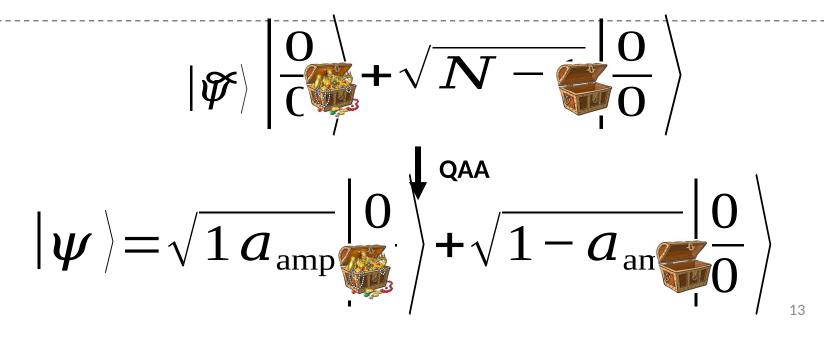
Prepare a superposition  $|\psi_A\rangle = A|0\rangle^{\otimes n}$  containing the solution.

Amplify the pre-image of 1 under via quantum amplitude amplification (



#### ntum approach:

- Prepare a superposition  $|\psi_A\rangle = A|0\rangle^{\otimes n}$  containing the solution.
- Amplify the pre-image of 1 under via quantum amplitude amplification (



#### ntum approach:

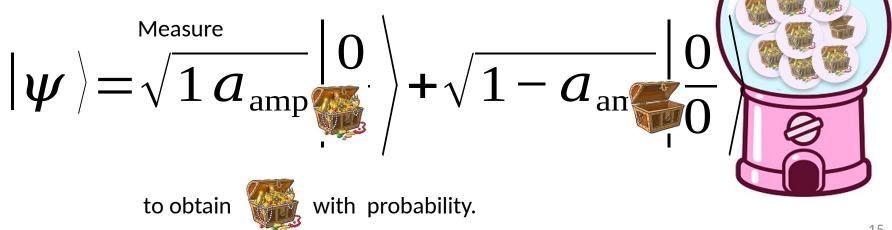
- Prepare a superposition  $|\psi_A\rangle = A |0\rangle^{\otimes n}$  containing the solution.
- mplify the pre-image of 1 under via quantum amplitude amplification (
- leasure to find a solution with high probability.

ntum approach:

Prepare a superposition  $|\psi_A\rangle = A|0\rangle^{\otimes n}$  containing the solution.

mplify the pre-image of 1 under via quantum amplitude amplification (

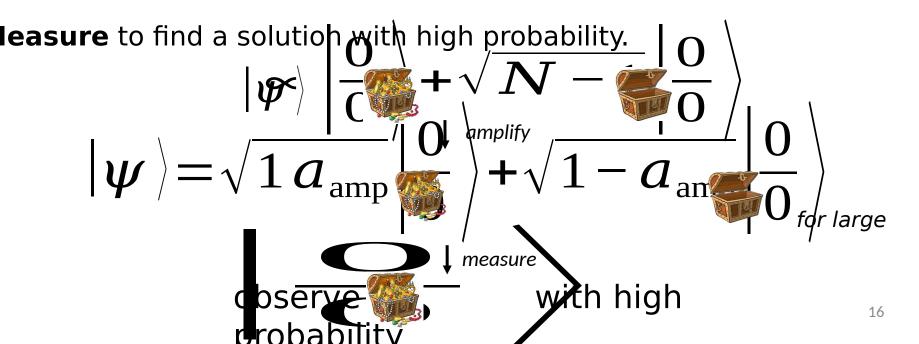
leasure to find a solution with high probability.

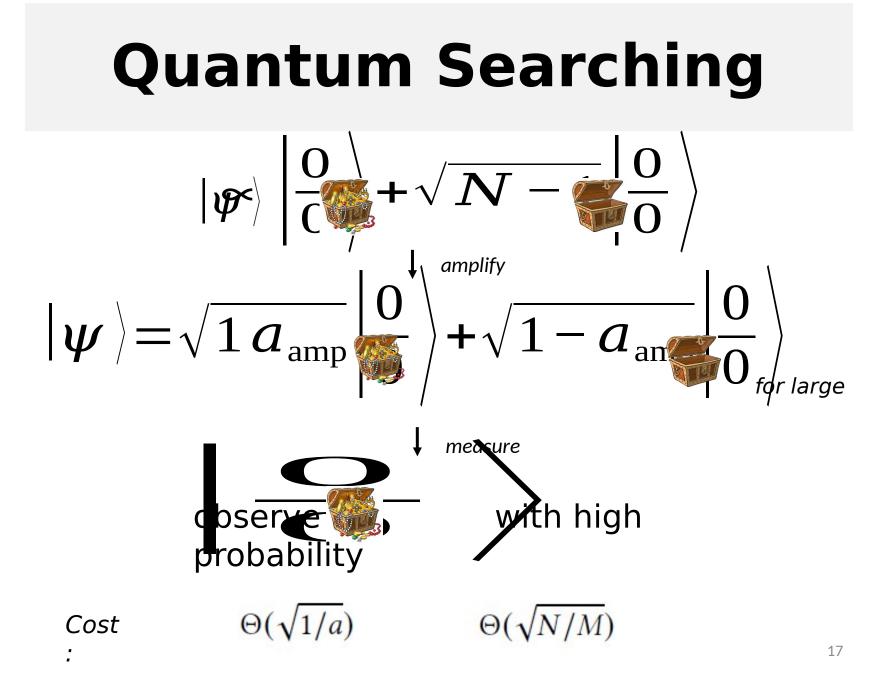


#### ntum approach:

repare a **superposition**  $|\psi_A\rangle = A |0\rangle^{\otimes n}$  containing the solution.

**mplify** the pre-image of 1 under via quantum amplitude amplification





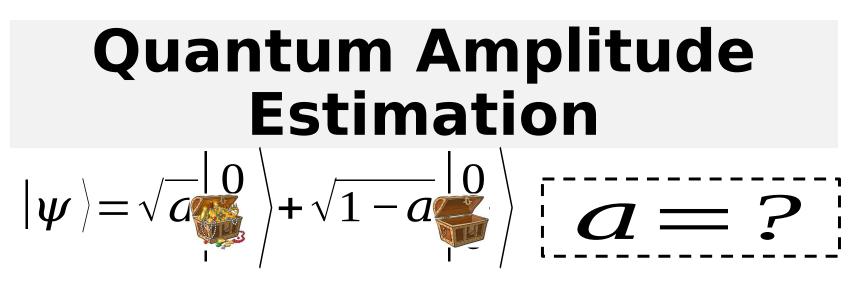
#### Quantum amplitude estimation (QAE) is related to

quantum searching; it occurs in the same framework,

and offers the same **quadratic speed-up**. It consists

on the task of estimating the parameter :  $|\psi\rangle = \sqrt{a}$  +  $\sqrt{1 - a}$ 

$$a=?$$

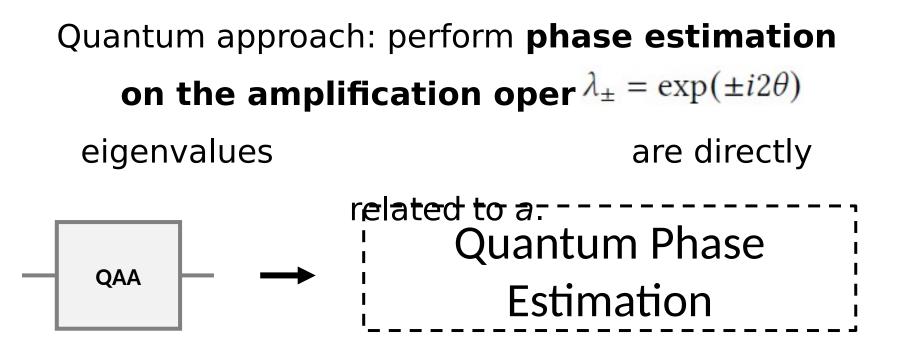


It becomes relevant when the problem is generalized to

consider more than one distinguished item, or even

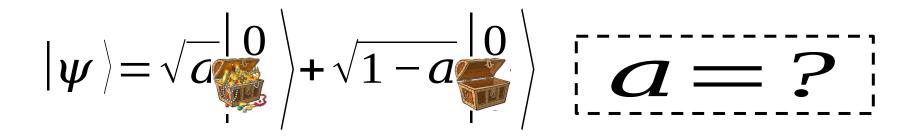
fractional amounts thereof - so that *a* can be any real





We measure one of two eigenphases: or

$$\epsilon \in O(1/K)$$



This estimation task is a fundamental routine, with a

wide range of applications in chemistry, machine

learning and statistics.

In particular, it can be used to **speed-up Monte** 

$$\mathbb{E}_{p(x)}[f(x)] = \int_{\Omega} f(x)p(x)dx$$
$$\mathbb{E}_{p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{f(x_i) \cdot p(x_i)}{\pi(x_i)} \qquad \{x_i\}_{i=0}^{N-1} \sim \pi(\cdot)$$
$$i \sum_{x} p(x) f(x) \qquad \text{for a uniform PMF}$$

#### Define distribution loading and function encoding

$$P \mid 0 \rangle^{\otimes n} = \sum_{x=0}^{2^{n}-1} \sqrt{p(x)} \mid x \rangle \qquad \qquad R \mid x \rangle \mid 0 \rangle = |x\rangle \left(\sqrt{f(x)} \mid 1 \rangle + \sqrt{1 - f(x)} \mid 0 \rangle\right)$$
$$R(P \otimes I_{1}) \mid 0 \rangle^{\otimes n} = \sum_{x=0}^{2^{n}-1} \sqrt{p(x)} \mid x \rangle \left(\sqrt{f(x)} \mid 1 \rangle + \sqrt{1 - f(x)} \mid 0 \rangle\right)$$

Rewrite in terms of orthonormal subspaces and normalize to get:

$$\left| \psi \right\rangle = \left| \psi_{1} \right\rangle + \left| \psi_{0} \right\rangle = \sqrt{a} \left| \tilde{\psi}_{1} \right\rangle + \sqrt{1 - a} \left| \tilde{\psi}_{0} \right\rangle$$

$$a \equiv \sum_{x} p(x) f(x) = \mathbb{E}_{p(x)}[f(x)]$$

We have an amplitude estimation

#### Define distribution loading and function encoding

$$P \mid 0 \rangle^{\otimes n} = \sum_{x=0}^{2^{n}-1} \sqrt{p(x)} \mid x \rangle \qquad \qquad R \mid x \rangle \mid 0 \rangle = |x\rangle \left(\sqrt{f(x)} \mid 1 \rangle + \sqrt{1 - f(x)} \mid 0 \rangle\right)$$
$$R(P \otimes I_{1}) \mid 0 \rangle^{\otimes n} = \sum_{x=0}^{2^{n}-1} \sqrt{p(x)} \mid x \rangle \left(\sqrt{f(x)} \mid 1 \rangle + \sqrt{1 - f(x)} \mid 0 \rangle\right)$$

Rewrite in terms of orthonormal subspaces:

$$|\psi_1\rangle = \sum_{x=0}^{2^n - 1} \sqrt{p(x)} \sqrt{f(x)} |x\rangle |1\rangle \qquad |\psi_0\rangle = \sum_{x=0}^{2^n - 1} \sqrt{p(x)} \sqrt{1 - f(x)} |x\rangle |0\rangle$$

Normalize to  $|\psi\rangle = |\psi_1\rangle + |\psi_0\rangle = \sqrt{a} |\tilde{\psi}_1\rangle + \sqrt{1-a} |\tilde{\psi}_0\rangle$  get:

We have an amplitude estimation

$$a \equiv \sum_{x} p(x) f(x) \approx \mathbb{E}_{p(x)}[f(x)]$$

Our initialization and oracle

operators are now:

 $A \equiv R(P \otimes I_1)$ 

 $\hat{U}_{j} = (I_{n} \otimes Z)$ 

Example: integrate  $\int_{b_{max}}^{b_{max}} \sin^2(x) dx$  importance distribution.

using a uniform

$$R \mid x \mid 0 \mid 0 \mid = \mid x \mid \left( \sin\left(\frac{(x+\frac{1}{2})b_{\max}}{2^{n}}\right) \mid 1 \right) + \cos\left(\frac{(x+\frac{1}{2})b_{\max}}{2^{n}}\right) \mid 0 \mid 0 \mid \right) \longrightarrow R = \prod_{k=1}^{n} \mathbb{C}^{(k)} R_{y} \left(\frac{b_{\max} \cdot x_{k}}{2^{n-k}}\right) \left(I_{n} \otimes R_{y} \left(\frac{b_{\max}}{2^{n}}\right)\right)$$
$$= \frac{b_{\max}}{2^{n}}/2 + \sum_{k=1}^{n} \frac{b_{\max} \cdot x_{k}}{2^{n-k}}/2$$
$$P = H^{\otimes n}$$

#### e can calculate the measurement probability for any bit strir

$$P(\text{measuring } x \mid QAE(\theta)) = \frac{P(\text{measuring } x \mid QPE(\theta/\pi)) + P(\text{measuring } x \mid QPE(1-\theta/\pi))}{2}$$

with

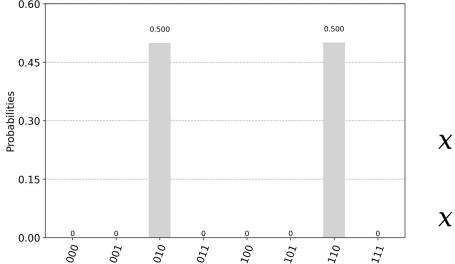
$$P(\text{measuring } x \mid QPE(\phi)) = \frac{\sin^2(K\Delta\pi)}{K^2 \sin^2(\Delta\pi)},$$

where  $\Delta$  is a circular distance, and also the error in the estimate produced by x:

$$\Delta = \left| \phi - \frac{x}{K} \right| \mod 1.$$

# When is an integer, we retrieve the exact solution by measuring.

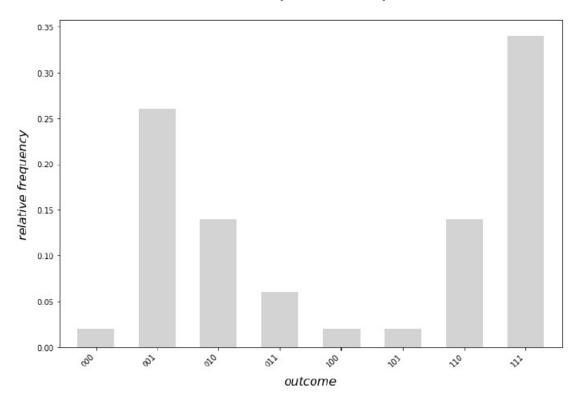
#### Example bar plot (deterministic case):



• 50 measurements

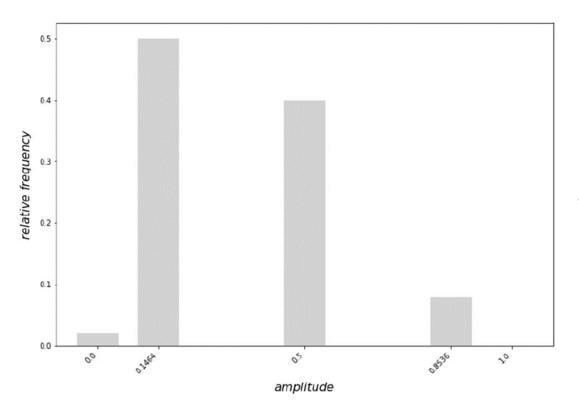
$$x = 0 b 0 10 = 2 \rightarrow \theta = \frac{X \pi}{K} = \frac{2\pi}{8}$$
$$x = 0 b 1 10 = 6 \rightarrow \theta = \frac{X \pi}{K} = \frac{6\pi}{8}$$

When is not an integer, the outcome distribution is not so neat. Example bar plot:

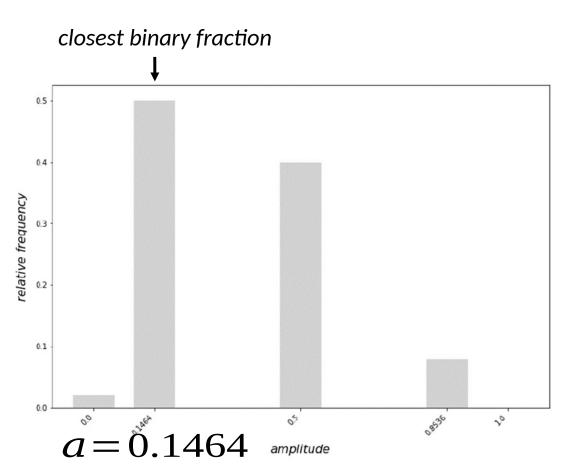


#### 50 measurements

We can still translate it into the amplitude domain:

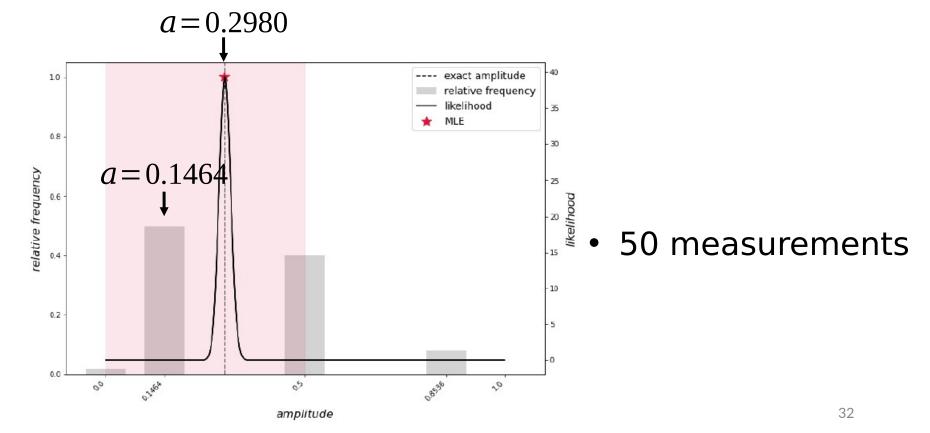


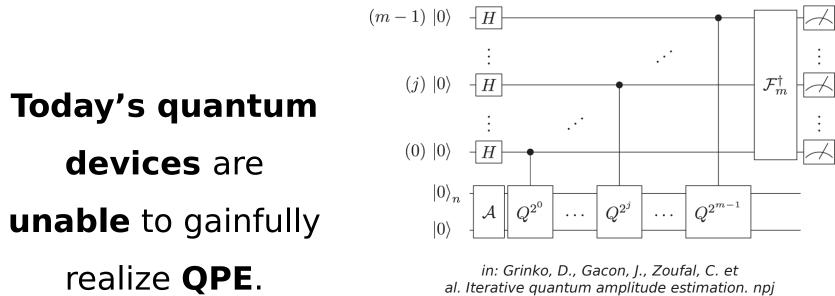
• 50 measurements



• 50 measurements

Rather than sticking to a grid, we can use our knowledge of the outcome distribution to sweep over a continuum of values for .

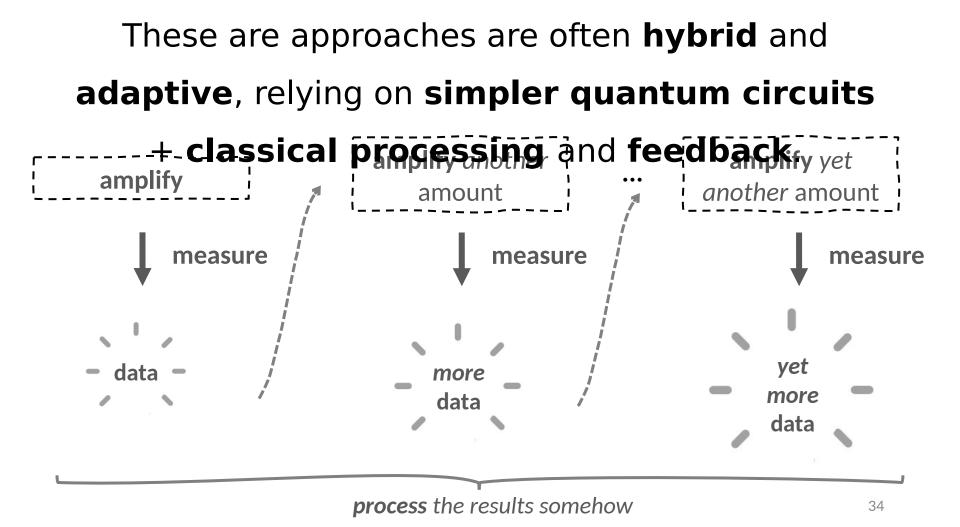




Ouantum Inf 7, 52 (2021).

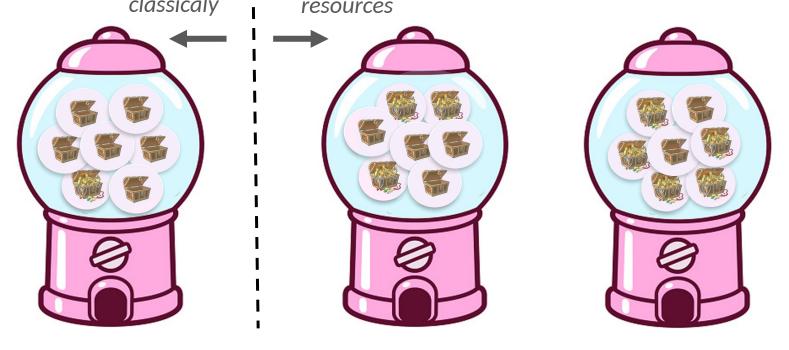
33

As such, alternative strategies have been proposed to achieve quantum-enhanced precision in more hardware-friendly ways.



#### The overarching idea is to use **quantum amplitude amplification** to make **more**

achievinformative measurements. classicaly resources



### Binomial $(p(\theta), N_{shots})$

Classically, we can

sample from:

#### **Quantum-enhanced**

measurements allow:

for any odd integer

### Quantum Amplitude Estimation

With ,

Preparing entails queries to A (forwards or backwards):

- for the initialization of
- for the applications of

It also requires queries to the oracle, one for each application of .

We can sample according to the probability

using a number of queries is in .

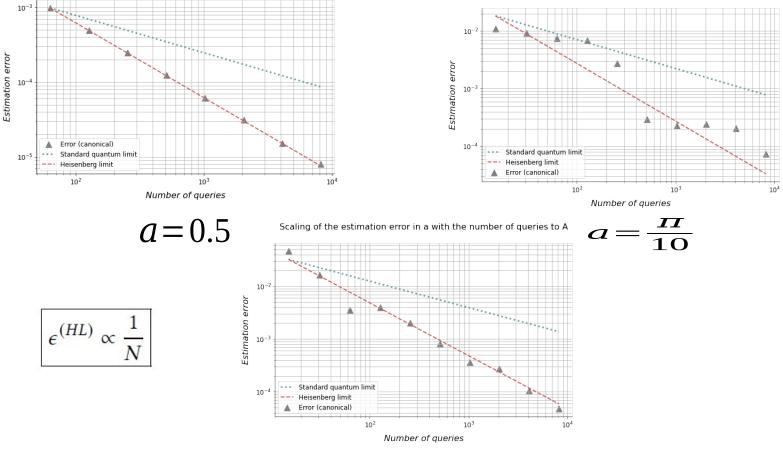
How to use these measurements is an open question.Each answer brings a different quantum advantage,classical overhead and noise resilience.

## Overview and numerical analysis of QAE algoritms

### **Textbook QAE**

#### Scaling of the estimation error in a with the number of queries to A

Scaling of the estimation error in a with the number of queries to A



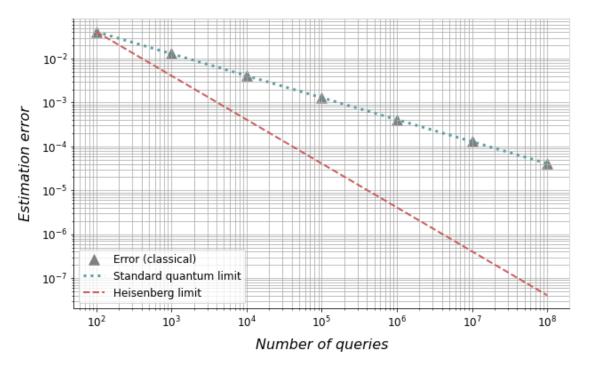
a Unifi

### Classical Amplitude Estimation

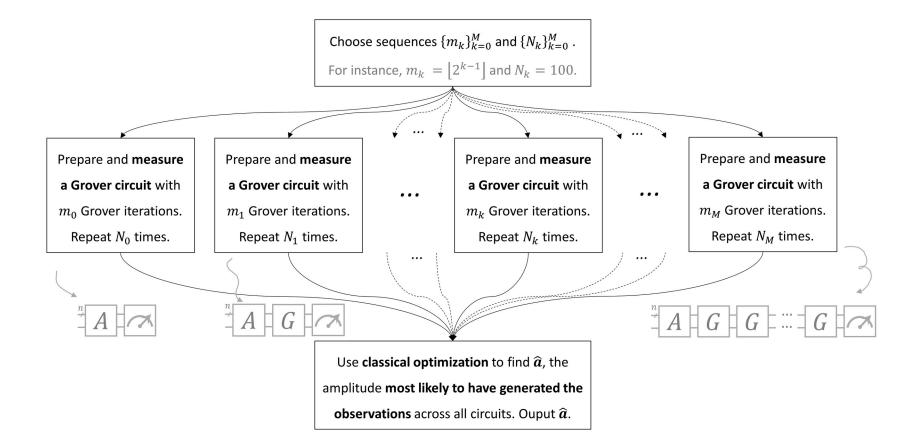
Compare with the classical case:

 $\epsilon^{(SQL)} \propto -$ 

Scaling of the estimation error in a with the number of queries to A



### Maximum Likelihod QAE

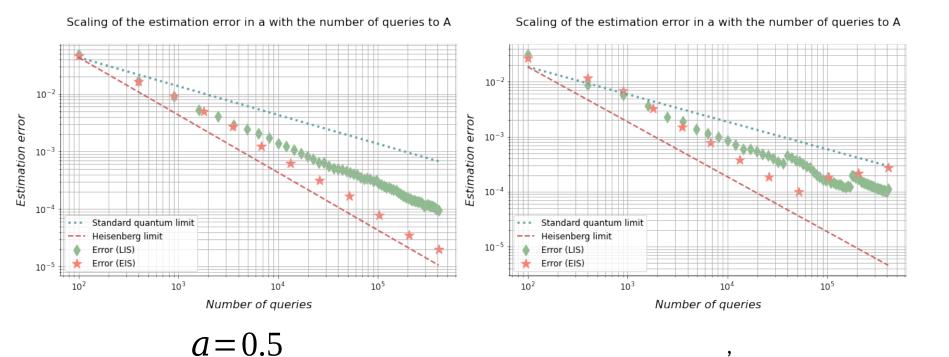


By Suzuki et al, 2020.

### Maximum Likelihod QAE

- Original proposal (Suzuki et al): ;
- Spin offs:
  - Variational QAE
  - Low depth  $QAIN \in O(1/\epsilon^{1+\beta})$  and  $D \in O(1/\epsilon^{1-\beta})$ 
    - Power Law: , a controllable parameter
    - QoPrime

### **Maximum Likelihod QAE**



45

### Quantum Amplitude Estimation

#### A note on performance benchmarking for adaptive algorithms

• Sample an x (representing N) coordinate uniformly at random on a log scale.

 $x \sim \text{unif}_{\log}([x_{\min}, x_{\max}])$ 

• Sample auxiliary variables *z* depending on *x*:

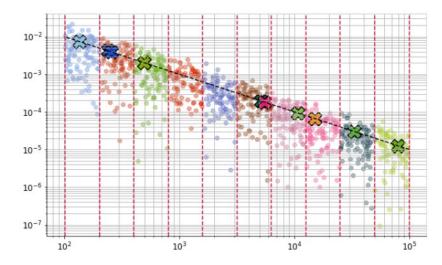
 $z \sim \mathcal{N}(\mu, \sigma(x)),$ 

 $\sigma(x) \propto 1/x$ .

where

The choice of the mean  $\mu$  is arbitrary, whereas the constant of proportionality is determined by fixing a point.

• Calculate y (representing  $\epsilon^2$ ) as  $y = (x - \mu)^2$ .



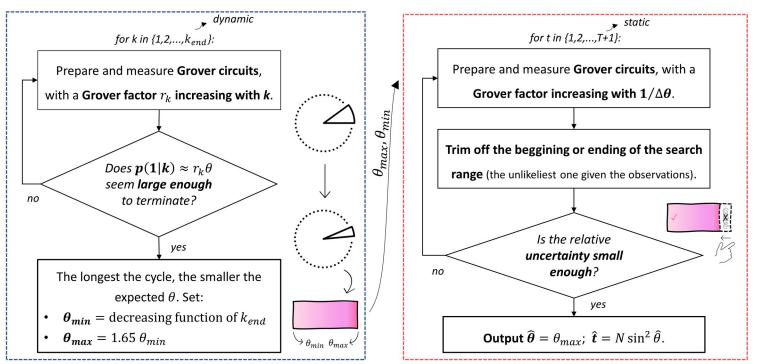
### QAE, simplified

#### **Pre-processing phase**

#### **Exponential refinement phase**

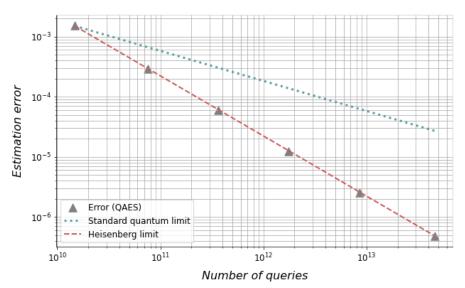
**Reduce the search range** to  $[\theta_{min}, \theta_{max}]$ , with  $\frac{\theta_{max}}{\theta_{min}} = 1.65$ .

**Reduce the relative uncertainty** by 10% per iteration.



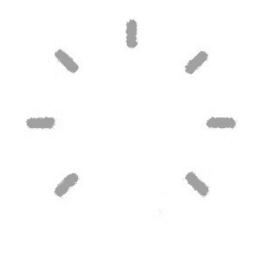
By Aaronson et al,

### QAE, simplified

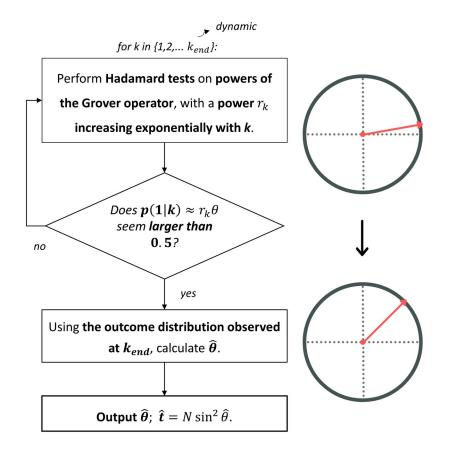


Scaling of the estimation error in a with the number of queries to A

a = 0.5

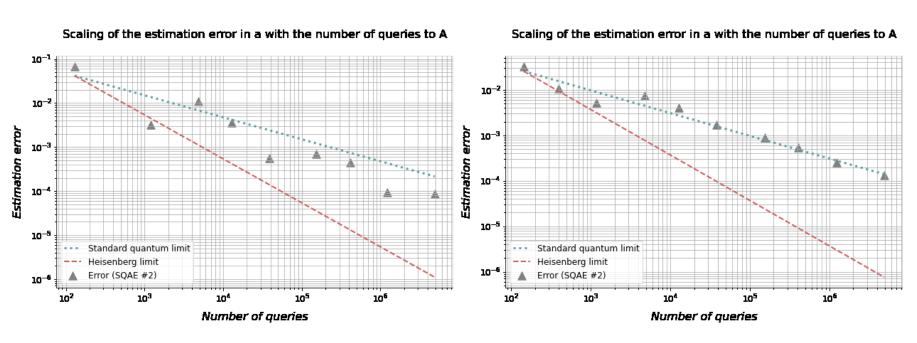


### **Simpler QAE**



By Wie,

### **Simpler QAE**



a = 0.5

49

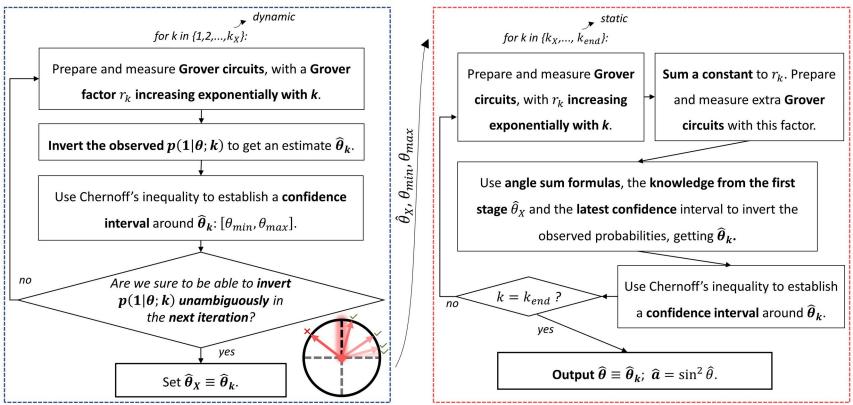
### **Faster QAE**

#### First stage

Learn by **inverting** the results of **Grover measurements** with **increasing amplification**, until they **become ambiguous**.

#### Second stage

Continue to learn by **complementing the former Grover measurements** with additional ones for **disambiguation**.



### **Faster QAE**

Scaling of the estimation error in a with the number of queries to A Scaling of the estimation error in a with the number of queries to A 10-1 10-1 10-2 10-2 Estimation error Estimation error 10<sup>-3</sup> 10<sup>-3</sup> 10-4 10-4 10-5 10-5 Standard quantum limit Standard quantum limit 10-6 Heisenberg limit Heisenberg limit 10-6 Error (FQAE) Error (FQAE) 1010 106 107 10<sup>9</sup> 106 107 10<sup>9</sup> 1010 108 108 10<sup>5</sup> 105 Number of queries Number of queries

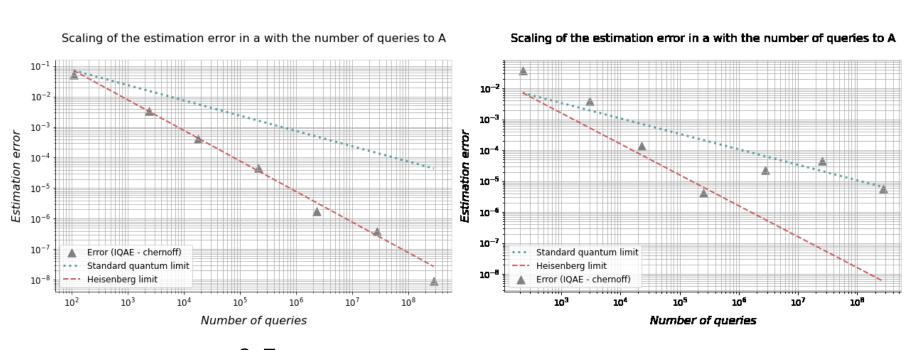
a = 0.5

### **Iterative QAE**



By Grinko et al, 2021. Modified version by Fukuzawa et al. 2022

### **Iterative QAE**

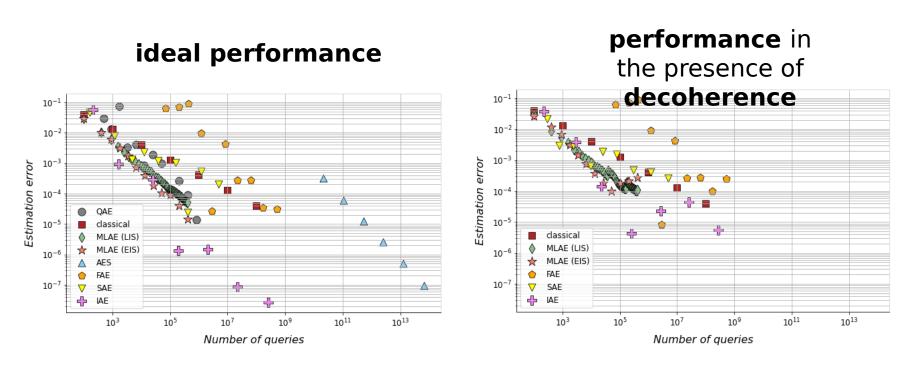


a = 0.5

### Summary

|                    | Key idea                                                | Parallelizable | Circuits       | Main strength(s)                                        | Main weak-<br>ness(es)                                  | Complexity                                                                                               |
|--------------------|---------------------------------------------------------|----------------|----------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| <b>QAE</b> [4]     | QPE on Grover<br>operator                               | no             | QPE            | optimal complexity                                      | very deep circuit;<br>noise oblivious                   | $N_q \in O(\tfrac{1}{\epsilon} \log \tfrac{1}{\alpha} \cdot a^{-1})$                                     |
| <b>MLAE</b> [56]   | heuristic measure-<br>ments → statistical<br>estimation | fully          | QAA            | simplicity;<br>solid numerical<br>performance           | no formal<br>guarantees;<br>unchecked<br>circuit growth | best case   observed:<br>$N_q^{(US)} \sim e^{-0.75}   e^{-0.76}$<br>$N_q^{(ES)} \sim e^{-1}   e^{-0.88}$ |
| <b>V-MLAE</b> [47] | MLAE with<br>variational<br>approximation               | fully          | QAA            | solid numerical<br>performance;<br>limits circuit depth | no formal<br>guarantees;<br>cost overhead               | similar to MLAE except for<br>EIS-observed (untested)                                                    |
| <b>AES</b> [1]     | rough localization<br>→ exponential<br>refinement       | partly         | QAA            | optimal complexity                                      | large cost offset;<br>noise oblivious                   | $N_q \in O\left(\frac{1}{e}\log \frac{1}{a} \cdot a^{-1}\right)$                                         |
| <b>SAE</b> [61]    | amplify →<br>invert probability                         | partly         | Hadamard tests | -                                                       | inconclusive<br>demonstrations                          | $N_q \in O(a^{-1})$                                                                                      |
| IAE [22]           | watchful choice of<br>Fisher information                | partly         | QAA            | nearly optimal complexity                               | unchecked<br>circuit growth;<br>noise oblivious         | $N_q \in O(\tfrac{1}{\epsilon}\log(\tfrac{1}{\alpha}\log\tfrac{1}{\epsilon}))$                           |
| <b>M-IA</b> E [17] | IAE but dis-<br>tribute shots<br>more favorably         | partly         | QAA            | optimal complexity                                      | same as IAE                                             | $N_q \in O(\tfrac{1}{\epsilon}\log \tfrac{1}{\alpha})$                                                   |
| <b>FAE</b> [42]    | complementary<br>measurements →<br>invert probability   | partly         | QAA            | nearly optimal complexity                               | unchecked<br>circuit growth;<br>noise oblivious         | $N_q \in O(\frac{1}{\epsilon} \log(\frac{1}{\alpha} \log \frac{1}{\epsilon})$                            |

### Summary



a = 0.1

### Bayesian amplitude estimation

#### **Bayesian inference**

offers a natural paradigm

for solving this problem.

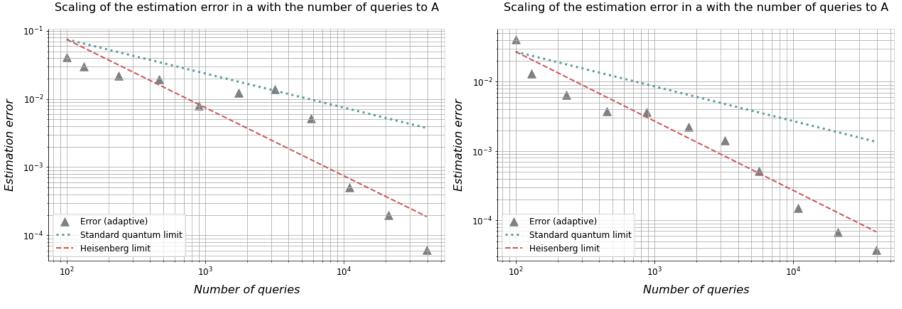
Unlike less general

protocols, it inherently

- The possibility of incorporating noise offers: models;
- **Flexibility** to tailor the protocol;
- Various ways of negotiating the trade-offs<sup>50</sup>

$$\mathbf{P}(\theta \mid D) = \frac{\mathbf{L}(\theta \mid D; E)\mathbf{P}(\theta)}{\mathbf{P}(D; E)}$$

### **Bayesian amplitude** estimation



a=1

Scaling of the estimation error in a with the number of gueries to A

mean results

median results

### Bayesian amplitude estimation

We can make the most of the open-endedness of Bayesian inference by:

- Properly handling noise;
- Using the **flexibility** to our benefit;
- Seeking the best cost-to-benefit ratio (across several types of *benefit* quantum enhancement, noise resilience and *cost* classical processing, online processing, optimization, discretization, quantum resources, quantum

depth, overheads).

# Robust amplitude estimation

- Bayesian inference with engineered likelihood functions
- Greedy variance reduction (adaptively minimize proxies thereof)
- Work under a Gaussian assumption (making the representation analytically tractable
- Simple noise model

By Wang et al, 2021.

### Conclusion

- All QAE algorithms suffer with the presence of noise, but they are affected differently: strategies with better idealized behavior may actually do worse once noise is introduced.
- We can expect that different algorithms respond differently to different types of noise, both qualitatively and quantitatively.
- Often, algorithm design focuses on "hardware-friendly" circuits. To make the most out of the available resources, the processing should be "hardware-friendly" as well.

# Thank you for your attention!

### Questions?