Towards Quantum Concurrency (ptl)

Inés Dias
Vitor Fernandes

INESC-TEC
University of Minho

March 3, 2023

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Motivation

speed up

noise coherence time

Quantum Computer

e Reduce qubits’ lifetime;
e Reorder of instructions
to reduce noise

@\AP

Simulation of concurrent quantum programs using Haskell

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 2 /33

Intuitions

@ Syntax

> set of ‘words’ and operators
» allows the construction of ‘sentences’

@ Semantics

» set of rules to evaluate ‘sentences’
> gives meaning to the ‘sentences’

@ Operational Semantics
> ‘sentences’ as commands to be executed by a computer

@ Denotational Semantics
> ‘sentences’ as mathematical objects

Parsing
» checking whether a given ‘sentence’ is part of a certain language

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 3/33

Contextualization |

cIMP [Bro96]

Syntax Semantics
[Syntax] —{ Semantics |———

Operational k » Denotational

Parser

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 4 /33

Contextualization |l

Syntax Semantics
[Syntax| o Semanties |———

|

Denotational

Operational

Parser

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 5/33

What is concurrency?

@ Ability to perform different tasks at a time
> is used to speed up processes

@ Popularized within computer science in the 60s by Dijkstra [Dij65]

» mutual exclusion

@ Nowadays is ubiquitous
» mobile apps

Usual Approach
Division of a task into independently small ones, which interact with each
other and are performed in an interleaved way

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 6 /33

Concurrent execution of a program

LSRN

Task to be executed

divided into two sub-tasks
Examples of interleaved execution of the sub-tasks

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023

7/33

cIMP

e Developed by Brookes [Bro96]
@ Shared-variable model

o Fully abstract
» operational and denotational semantics are equivalent

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 8 /33

Syntax

Bii=tt‘ff|—|B’Bl&Bg|E1§E2
E:::0\1|I|E1+E2]ithhen E; else E;

C:=skip|/:= E|Cy;Cqy| Cy4||Cq | if B then C; else C, | while B do C

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 9 /33

Operational Semantics

Configuration J

(C, s), where C is a command and s is a state

@ Booleans and expressions:
> BBl ={(s,v) | (B,s) =~ v}
> &[E] ={(s,n) | (E,s) =" n}

@ Commands:

(E,s) =>*n

(I -==E,s) skip, [s | | = n])

=
<C17 > - <C,17 Sl> <C27 S> — <C/27 S/>
(C4[[C2, 5) = (Ci[[C2, §') (Ci[C2, 5) — (Cu|C5, S7)

(while B do C, s) — (if B then C;while B do C else skip, s')

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 10 / 33

Example

(x:=1|]x:=2, [x =0])

T

(skip||x :=2, [x =1]) (x :=1||skip, [x =12])
(skip|[skip, [x = 2]) (skip|[skip, [x =1])

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

How to implement this language using HASKELL?

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Goal

To determine the final configuration of a computation, given an initial
configuration.

‘ Initial Configuration }—){ Final configuration ‘

(a:=a+1, [a=0]) (skip, [a=1])

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 13 /33

What do we need?

We need to implement: a parser; the semantics.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

What do we need?

We need to implement: a parser; the semantics.

@ Parser

"a := a+l" Asg "a" (Plus (Id "a") One)

"a = a+1" (error)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 14 / 33

What do we need?

We need to implement: a parser; the semantics.

@ Parser

"a := a+l" Asg "a" (Plus (Id "a") One)

"a = a+1" (error)

@ Semantics

command |[Asg "a" (Plus (Id "a") One) —»{Skip‘

state [a=0] [a=1]

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 14 / 33

Our implementation in a nutshell

a command
Parser

value of type C corresponding to the command |

| Semantics |<—| current state |

|fina| command + final state|

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 15/ 33

Syntax in HASKELL
data B = BTrue | BFalse | Not B| And BB |Leq EE
BZ::tt‘ff|ﬂB|Bl&Bz|E1§E2

A value of type B is a boolean expression.

data E = Zero | One | Id String | Plus EE | IfTEEBEE
E:=0]|1]|/]|E + Ey|if B then E; else E;

A value of type E is an integer expression.

data C = Skip | Asg String E | Seq C C | Paral C C | IfTE.C B C C |
WhDo B C

C:=skip|/:=E |Cy;Cqy| Cy4||Cqy | if B then C; else C, | while B do C

A value of type C is a command.
Inés Dias Vitor Fernandes

Towards Quantum Concurrency (ptl) March 3, 2023 16 / 33

Syntax in HASKELL (example)

data B = BTrue | BFalse | Not B | And BB |Leq EE
data E = Zero | One | Id String | Plus EE | IfTEEB EE

data C = Skip | Asg String E | Seq C C | Paral C C | IfTE.C B C C |
WhDo B C

Example of a command (a value of type C):

Asg ‘a’ (IfTEE (Leq (Id ‘a’) (Id 'b")) Zero One)
a:=if (a < b) then 0 else 1

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 17 / 33

Syntax in HASKELL (with auxiliary data types)

data B = BTrue | BFalse | Not B| And BB |Leq EE
data E = Zero | One | Id String | Plus EE | IfTEEBEE

data C = Skip | Asg String E | Seq C C | Paral C C | IfTEC B C C |
WhDo B C

Some auxiliary data types, useful for implementing the parser:

data BAux = BTrueAux | BFalseAux | NotAux BAux |
AndAux BAux BAux | LeqAux E E | StrB String

data CAux = SkipAux | AsgAux String E | SeqAux CAux CAux |
ParalAux CAux CAux | IfTE_CAux BAux CAux CAux |
WhDoAux BAux CAux | StrC String

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 18 / 33

A parser for the language

@ PARSEC is the HASKELL library used to implement our parsers.

Example 1: a parser for assignments (I := E)

pCAsg = do
i <— parselde

string ‘:=
e <— parseExp
return (AsgAux i e)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 19 /33

https://hackage.haskell.org/package/parsec

A parser for the language

@ PARSEC is the HASKELL library used to implement our parsers.

Example 1: a parser for assignments (I := E)

pCAsg = do
i <— parselde

string ‘:=
e <— parseExp
return (AsgAux i e)

@ Parser parselde returns the parsed identifier (i is an identifier)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 19 /33

https://hackage.haskell.org/package/parsec

A parser for the language

@ PARSEC is the HASKELL library used to implement our parsers.

Example 1: a parser for assignments (I := E)

pCAsg = do
i <— parselde

string ‘:=
e <— parseExp
return (AsgAux i e)

@ Parser parselde returns the parsed identifier (i is an identifier)

@ Parser string ‘:=" parses the string

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 19 /33

https://hackage.haskell.org/package/parsec

A parser for the language

@ PARSEC is the HASKELL library used to implement our parsers.

Example 1: a parser for assignments (I := E)

pCAsg = do
i <— parselde
string ‘“:="'
e <— parseExp
return (AsgAux i e)

@ Parser parselde returns the parsed identifier (i is an identifier)

@ Parser string ‘:=" parses the string "=
@ Parser parseExp returns the parsed expression (e is an expression)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 19 /33

https://hackage.haskell.org/package/parsec

A parser for the language

@ PARSEC is the HASKELL library used to implement our parsers.

Example 1: a parser for assignments (I := E)
pCAsg = do

i <— parselde

string ‘“:="'

e <— parseExp

return (AsgAux i e)

@ Parser parselde returns the parsed identifier (i is an identifier)

@ Parser string ‘:=" parses the string "=
@ Parser parseExp returns the parsed expression (e is an expression)
Thus: parser pCAsg parses an assignment | := E and returns the corresponding

value of type CAux.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 19 /33

https://hackage.haskell.org/package/parsec

A parser for the language

Example 2: a parser for commands

pC = try(pCSeq) <|> try(pCParal) <|> try(pCSkip) <|>
try (pCAsg) <[> try(pClf) <|> try(pCWhile) <|> pCParen

Each of the parsers in the definition of pC parses a different ‘type’ of command:
@ pCSeq parses a sequence of commands (e.g. ‘a:=1 ; b:=a')
@ pCParal parses a parallel composition of commands
(e.g. 'a:=1 || b:=a’)

@ pCParen parses a command inside parentheses (e.g. ‘(skip)’)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 20 /33

A parser for the language

Example 2: a parser for commands

pC = try(pCSeq) <|> try(pCParal) <|> try(pCSkip) <|>
try (pCAsg) <[> try(pClf) <|> try(pCWhile) <|> pCParen

@ First, parser pCSeq is tried.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 21 /33

A parser for the language

Example 2: a parser for commands
pC = try(pCSeq) <|> try(pCParal) <|> try(pCSkip) <|>
try (pCAsg) <[> try(pClf) <|> try(pCWhile) <|> pCParen
@ First, parser pCSeq is tried.

> If it succeeds in parsing the input, pC returns the value returned by
pCSeq.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 21 /33

A parser for the language

Example 2: a parser for commands
pC = try(pCSeq) <|> try(pCParal) <|> try(pCSkip) <|>
try (pCAsg) <[> try(pClf) <|> try(pCWhile) <|> pCParen
@ First, parser pCSeq is tried.

> If it succeeds in parsing the input, pC returns the value returned by
pCSeq.
» Otherwise, pCParal is applied, and so on.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 21 /33

A parser for the language

Example 2: a parser for commands
pC = try(pCSeq) <|> try(pCParal) <|> try(pCSkip) <|>
try (pCAsg) <[> try(pClf) <|> try(pCWhile) <|> pCParen
@ First, parser pCSeq is tried.

> If it succeeds in parsing the input, pC returns the value returned by
pCSeq.
» Otherwise, pCParal is applied, and so on.

In sum: parser pC checks if the input begins with a command and, if so, returns a
value of type CAux corresponding to that command.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 21 /33

Semantics in HASKELL - using a scheduler

(Cy, s) = (Cl, §) (Ca, s) = (Ch, §)
(CallC2y 5) = (C4[Co, 8") (Cul|C2y 5) = (Cul[Ca,)

@ If (C1, s) and (Cq, s) are not terminated configurations, there are two
branches of execution for (C4||Ca,).

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 22 /33

Semantics in HASKELL - using a scheduler

(C1, s) = (C], &) (Ca, s) = (Ch, §)
{CallCo, s) = (Cil[Ca, s') (Cul[Ca,) = (Cal[Ca, S7)

@ If (C1, s) and (Cq, s) are not terminated configurations, there are two
branches of execution for (C4||Ca,).

@ Then, we need a scheduler to decide which branch of execution (C4||Ca, s)
follows.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 22 /33

Semantics in HASKELL - using a scheduler

<C1||C2, S> —7?

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Semantics in HASKELL - using a scheduler

<C1||C27 S> —7?

nextStepSch (Paral cl c2) s = do
x <— sched
if (x==0) then (fst cl c2 s) else (snd cl c2 s)

@ sched is a scheduler

@ x is a pseudo-random integer (0 or 1)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 23 /33

Semantics in HASKELL - using a scheduler

<C1||C27 S> —7?

nextStepSch (Paral cl c2) s = do
x <— sched
if (x==0) then (fst cl c2 s) else (snd cl c2 s)
@ sched is a scheduler
@ x is a pseudo-random integer (0 or 1)

@ if x = 0 then (C}||C2, s') is returned:

(C1, s) = (Cy,)
(C1][C2, 5) — (Ci][Ca, s7)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023

23 /33

Semantics in HASKELL - using a scheduler

<C1||C27 S> —7?

nextStepSch (Paral cl c2) s = do
x <— sched
if (x==0) then (fst cl c2 s) else (snd cl c2 s)
@ sched is a scheduler
@ x is a pseudo-random integer (0 or 1)

@ if x = 0 then (C}||Cq, s’) is returned:
1

(C1, s) = (Cy,)
(C1][C2, 5) — (Ci][Ca, s7)

@ else (C4]|C5, s is returned:
(C2, 5) = (Cy, 8)
(C1[[C2, 5) — (C4][C5, s7)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 23 /33

Semantics in HASKELL - example

bigStepToStr c s = list of final configurations that (c, s) can evolve to:
bigStepToStr "a:=0 || a:=1" [("a",5)] =
= [(Paral Skip Skip,[("a",1)]),(Paral Skip Skip, [("a",0)])]

(skip|lskip, [a=1]) (skip|[skip, [a = 0])

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Semantics in HASKELL - example

bigStepToStr c s = list of final configurations that (c, s) can evolve to:
bigStepToStr "a:=0 || a:=1" [("a",5)] =
= [(Paral Skip Skip,[("a",1)]),(Paral Skip Skip, [("a",0)])]

(skip|lskip, [a=1]) (skip|[skip, [a = 0])

bigStepSchToStr c s calculates the final configuration that (c, s) evolves
to (using a scheduler):

*Semantics_lingSimpl> bigStepSchToStr "a:=0 || a:=1" [("a",5)]
(Paral Skip Skip,[("a",1)])
*Semantics_lingSimpls> blgStepSchToStr "a:=0 [] a:=1" [("a",5)]
(Paral Skip Skip,[("a",0)])

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 24 /33

Going quantum

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Syntax

C:.= Skip | U(Ei) | C1;Cy ‘ C]_HCQ | M(q) — (Cl,CQ)

@ skip: absence of action

@ U(g): application of a unitary operation U to qubits

Cy; Cy: sequential composition of two commands

C1||Cq: parallel composition of two commands

M(q) — (Cy,Cq): measurement of qubit q followed by the execution of
Cy if we read |0) or the execution of C, otherwise

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 26 /33

Semantics

Configuration

(C, v € C?"), where C is a command and v is a unit vector in C?" J
(Ci, v) —> > i pi- (Ciy Vi) (Co, v) —> 325 P+ (Cy, vj)

(Ci]lC2, v) — 32 pi- (Ci[C2, vi) (Ci]IC2, v) — 325 pj - (CalICy, V)

(U(g), v) — 1-(skip, U(§)(v))

M(q) — (C1,C2), v) — po - (C1, o) + p1-(C2, V1)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 27 /33

Notation

(c, [0)) ——— o AR (¢, [0))

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Example

(skip || X(x), H|0)) (H(x) || skip, X|0))
1 1
(skip || skip, XH |0)) (skip || skip, HX |0))

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl) March 3, 2023 29 /33

Notation next example

o We write:
» sk for skip

» M(q) for M(q) — (skip, skip)

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

(H(x); X(y) || M(x), [0x0y))

./ \.

s 1
(X(y) I M(x), Hx[00)) (H(x); X(y) || sk, |00))
° ° gl
1; 0.5 0.5 (X(y) || sk, Hy |00))
(sk || M(x), H«[01)) (X(y) || sk, |00)) (X(y) |l sk, [10)) .
l / <1
\ (sk || sk, Hy|01))
@1

Hj 05 sk||sk 01)) (sk || sk, |11))

(sk || sk, |01)) (sk||sk, [11))

March 3, 2023 31/33

Bibliography |

Stephen Brookes.
Full abstraction for a shared-variable parallel language.
Information and Computation, 127(2):145-163, 1996.

Edsger W. Dijkstra.

Solution of a problem in concurrent programming control.
Commun. ACM, 8(9):569, 1965.

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

Thank you for your attention

Inés Dias Vitor Fernandes Towards Quantum Concurrency (ptl)

